



# HyperSearch: Prediction of New Hyperedges through Unconstrained yet Efficient Search



**Hyunjin Choo** 



Fanchen Bu



**Hyunjin Hwang** 



Young-Gyu Yoon



**Kijung Shin** 

# **Group Interactions are Everywhere!**

• A group Interaction (GI) is an interaction involving two or more entities

RASP: Robust Mining of Frequent Temporal Sequential Patterns under Temporal Variations

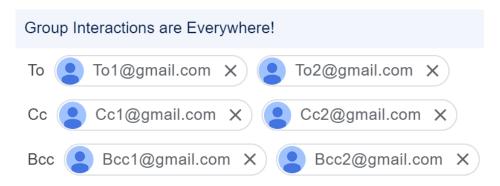
Hyunjin Choo<sup>1</sup>, Minho Eom<sup>1</sup>, Gyuri Kim<sup>1</sup>, Young-Gyu Yoon<sup>1</sup> and Kijung Shin<sup>2\*</sup>

<sup>1</sup>School of Electrical Engineering, KAIST, Daejeon, South Korea. <sup>2</sup>Kim Jaechul Graduate School of AI, KAIST, Seoul, South Korea.

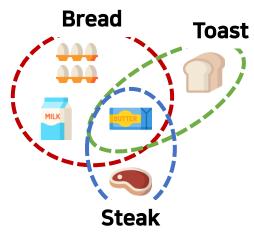
#### **Co-authorship**

#boot #networking #drivers #server #wireless

#### Tags added to a question



#### Email addresses in an email



Ingredients in recipes

# **Hypergraphs Model Group Interactions**

Hypergraphs offer a natural framework for modeling group interactions

RASP: Robust Mining of Frequent Temporal
Sequential Patterns under Temporal
Variations

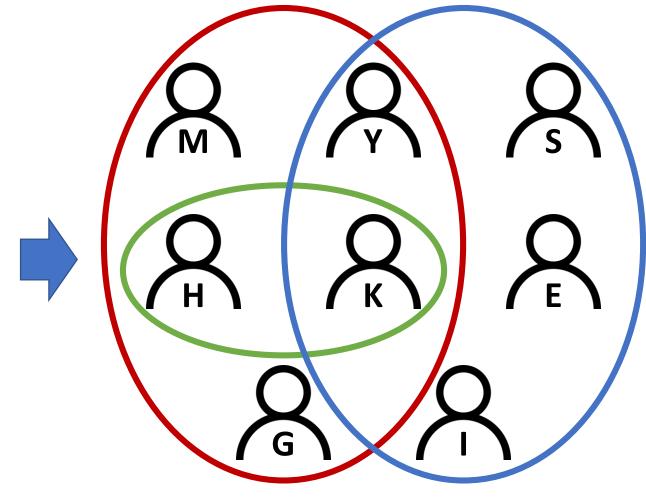
Hyunjin Choo<sup>1</sup>, Minho Eom<sup>1</sup>, Gyuri Kim<sup>1</sup>, Young-Gyu Yoon<sup>1</sup> and Kijung Shin<sup>2\*</sup>

On the Persistence of Higher-Order Interactions in Real-World Hypergraphs

Hyunjin Choo\* Kijung Shin<sup>†</sup>

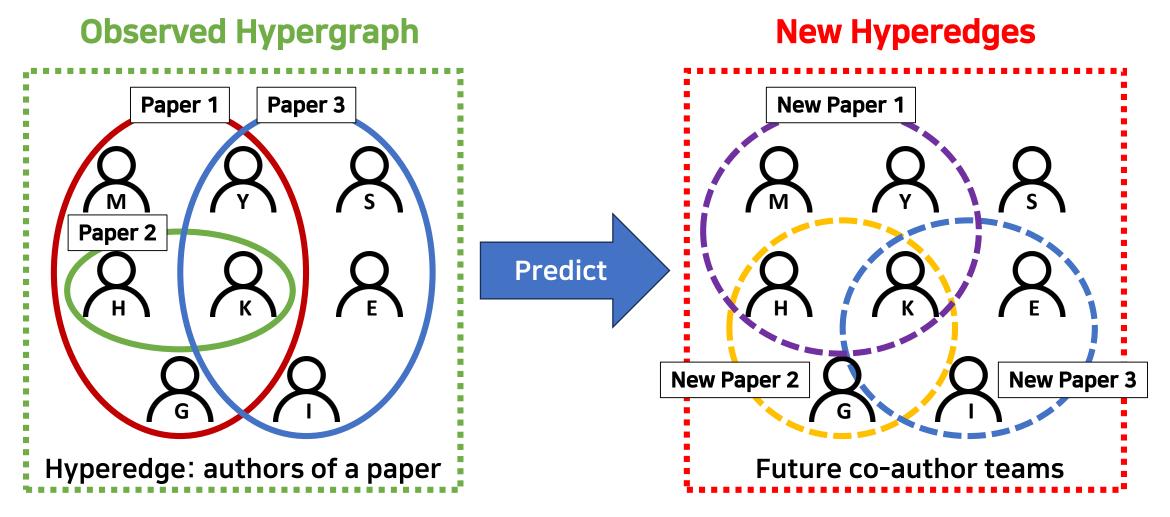
Efficient Neural Network Approximation of Robust PCA for Automated Analysis of Calcium Imaging Data

Seungjae  ${\rm Han^1},$  Eun-Seo  ${\rm Cho^1},$  Inkyu ${\rm Park^2},$  Kijung  ${\rm Shin^{1,2}},$  and Young-Gyu  ${\rm Yoon^1}$ 



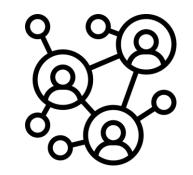
### Problem: Hyperedge Prediction

• Given an observed hypergraph, predict new (future) hyperedges



#### **Real-World Applications**

- Group recommendation [Liben-Nowell et al., 2003, Wang, Peng, et al, 2015]
  - Recommending relevant groups within social networks enhances user experiences
- Collaboration prediction [Wang, Xi et al., 2014, Lande, et al., 2020]
  - Predicting collaborations with shared interests or expertise optimizes team formation
- Drug discovery [Jin, Shuting, et al., 2023, Saifuddin, K. M., et al., 2023]
  - Forecasting functional groups of protein complexes or genes facilitates drug discovery



Group Recommendation



Collaboration prediction

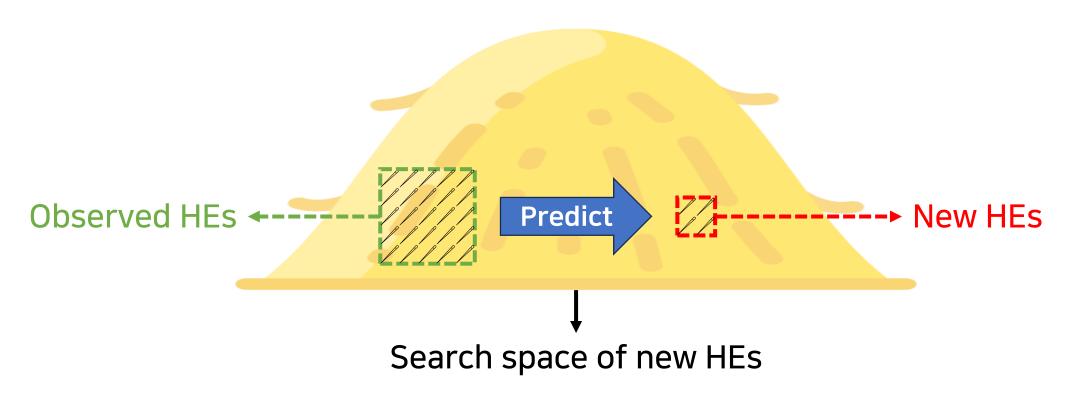


Drug Discovery

# Challenge: Vast Search Space of New Hyperedges

- Search space of new hyperedges:  $O(2^n)$  for n nodes
  - E.g., In DBLP,  $n = 15,639 \rightarrow \text{Search Space of new HEs: } 2^{15,639} = 6.4 \times 10^{4,707}$

#### "Finding a needle in a haystack"



#### **Related Works and Contributions**

#### Limitations of prior works

- Constrained candidate sets
  - Limited to binary classification, distinguishing between positive and negative within candidate set
  - How to obtain a promising candidate set with the ground-truth is not addressed
- Unjustified structural assumptions
  - Methods that avoid candidate sets often depend on structural assumptions

#### Our contributions

- We proposed a principled and learnable algorithm without requiring a candidate set
- HyperSearch directly generates a candidate set, which is much smaller than search space

#### HyperSearch: Overview

- Goal: Predict new hyperedges from a vast search space
  - Component 1: Scoring based on empirical observations
  - Component 2: Rapid top-k search with pruning

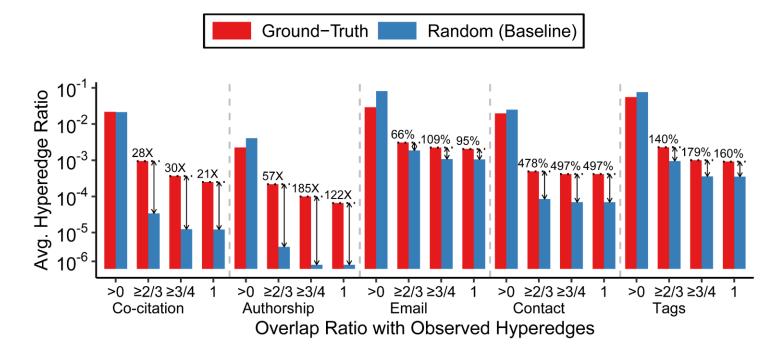


#### Hyperedge Scoring Based on Observations

- Goal: Predict new hyperedges from a vast search space
  - Component 1: Scoring based on empirical observations
  - 1. Significant Overlap between hyperedges
  - 2. Temporal Bias in Structural Overlap
  - Component 2: Rapid top-k search with pruning

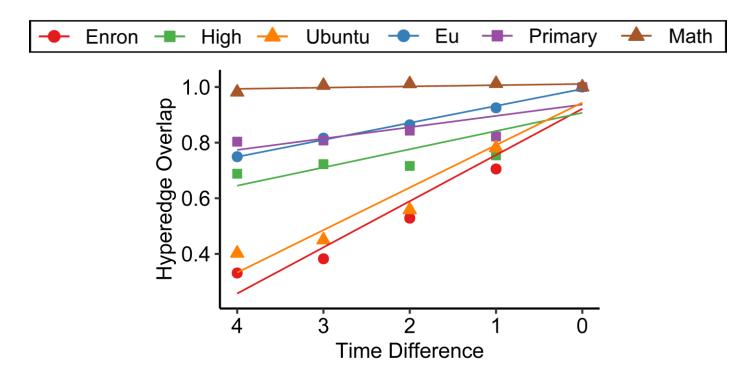
### Obs. 1: Significant Overlap between Hyperedges

- We measure the structural overlap between new (20%) and observed hyperedges (80%), and compare it with random hyperedges as a baseline
  - High-overlap hyperedges are more frequent in ground truth than random
  - > New hyperedges are more likely to substantially overlap with existing ones.
  - Scoring function prioritizes candidates with high overlap



#### Obs. 2: Temporal Bias in Structural Overlap

- We measure the structural overlap between new (20%) and observed hyperedges (80%) across different timestamp groups, using five equal-sized partitions
  - Overlap increases as the time gap between new and observed groups decreases
  - > New hyperedges tend to reuse more recent existing interactions than earlier ones
  - > Scoring function adds higher weights to more recent observed hyperedges



#### Component 1: Scoring Based on Observations

- **S1**. Prioritizing candidates with high overlap
  - Obs. 1: Significant overlap between hyperedges

- **S2**. Weighting more recent observed hyperedges
  - Obs. 2: Temporal bias in structural overlap

### **S1. Concepts: Relaxed Overlap Count**

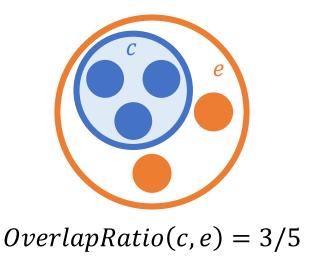
- Inspired by *support* in frequent itemset mining:
  - Support counts co-appearance of nodes across observed hyperedges
  - Exact co-appearance is too strict → allow partial co-appearance
- Keep only eligible supporters that satisfy three relaxation criteria  $\rightarrow$  subset  $\tilde{E} \subset E$ 
  - Node  $(\epsilon_p)$ : each candidate node is present in most supporters
  - Hyperedge  $(\epsilon_e)$ : any single supporter may miss only a small fraction of hyperedge candidate e'
  - Total  $(\epsilon_t)$ : overall missing occurrences remain limited
- Relaxed overlap count:  $ovr(e', \epsilon_v, \epsilon_e, \epsilon_t) = |\tilde{E}(e', \epsilon_v, \epsilon_e, \epsilon_t)|$

#### 

# **S1. Incorporating Overlap Ratio**

- Relaxed overlap count only accounts for the number of observed hyperedges that satisfy the relaxation criteria
  - We further incorporate overlap ratio to capture the degree of overlap

$$OverlapRatio(c,e) \coloneqq \frac{|c \cap e|}{|e|}$$



# S2. Time Weight

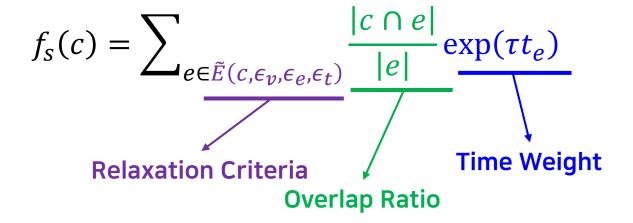
• Time weight: assigns greater significance to more recent hyperedges

$$\exp(\tau t_e)$$

- $\tau$ : adjustable parameter that determines the emphasis on recent hyperedges
- $t_e \in [0,1]$ : normalized timestamp of e

#### Final Scoring Function of HyperSearch

• Final score for a hyperedge candidate c:

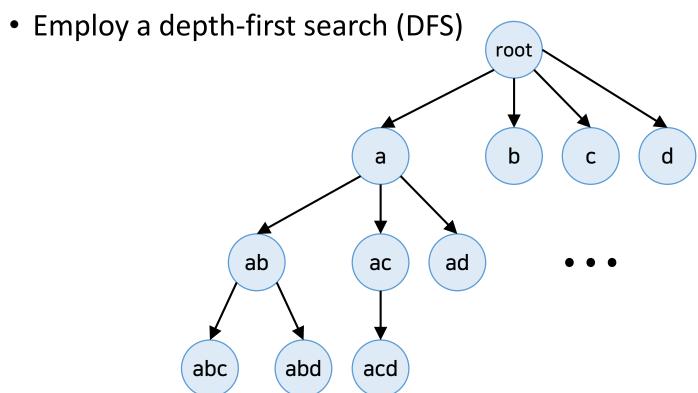


#### Component 2: Rapid Top-k Search with Pruning

- Goal: Predict new hyperedges from a vast search space
  - Component 1: Scoring based on empirical observations
  - Component 2: Rapid top-k search with pruning
  - 1. Search strategy
  - 2. Pruning scheme
  - 3. Top-k selection

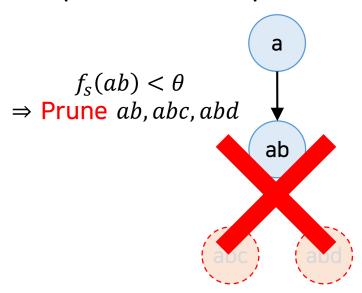
# Overview of Top-k Search (1)

- Given observed hyperedges,
- Top-k search aims to identify the top-k highest-scoring new hyperedges
  - 1. Search strategy



# Overview of Top-k Search (2)

- Given observed hyperedges,
- Top-k search aims to identify the top-k highest-scoring new hyperedges
  - 1. Search strategy
  - 2. Pruning scheme
    - If a scoring function is anti-monotonic, search space can be pruned by a threshold  $\theta$
    - If  $f_s(S) < \theta$ , we can prune all its supersets together

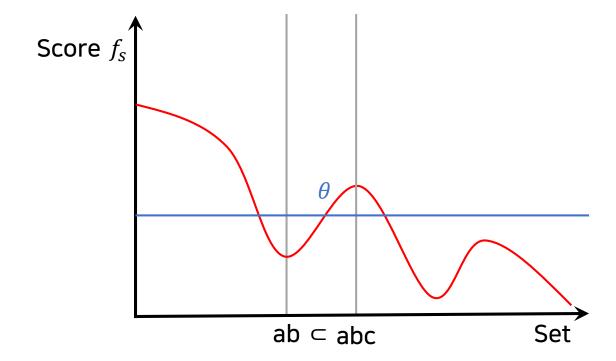


#### Overview of Top-k Search (2)

- Given observed hyperedges,
- Top-k search aims to identify the top-k highest-scoring new hyperedges
  - 1. Search strategy
  - 2. Pruning scheme
    - If a scoring function is anti-monotonic, search space can be pruned by a threshold  $\theta$
    - However, our scoring function  $f_s$  is not anti-monotonic for arbitrary relaxation ratios
    - We use an anti-monotonic upper bound function  $f_n$  instead

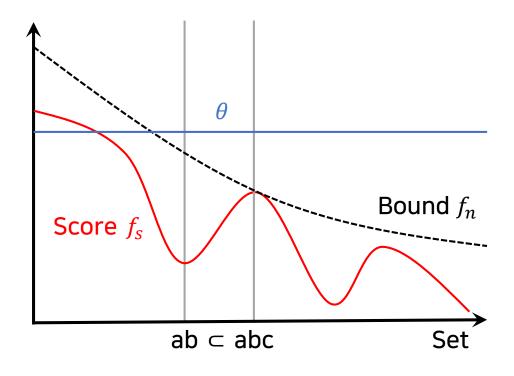
# **Details** Scoring Function is Not Anti-Monotonic

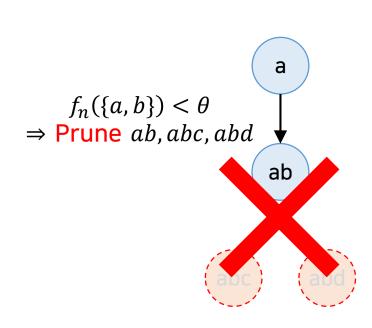
- Our scoring function  $f_S$  is not anti-monotonic
  - $\{a,b\} \subset \{a,b,c\} \Rightarrow f_s(\{a,b\}) \ge f_s(\{a,b,c\})$
  - $ightharpoonup f_S(\{a,b\}) < \theta \Rightarrow f_S(\{a,b,c\}) < \theta \Rightarrow \text{all supersets of } \{a,b\} \text{ cannot be pruned}$



# **Details** Anti-Monotonic Upper-Bound Function

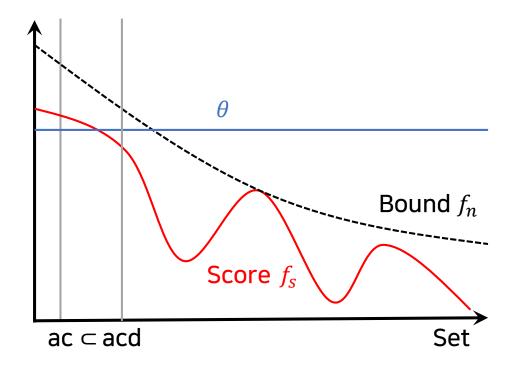
- Search space can be bounded on an anti-monotonic upper-bound function  $f_n$ 
  - $f_n(S) < \theta \Rightarrow$  all supersets of S can be pruned from the search space

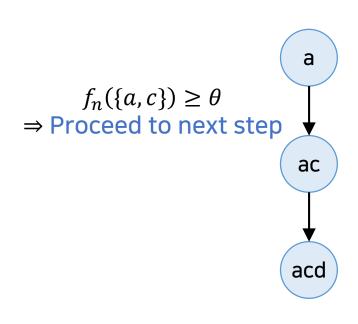




# **Details** Anti-Monotonic Upper-Bound Function

- ullet Search space can be bounded on an anti-monotonic upper-bound function  $f_n$ 
  - $f_n(S) \ge \theta \Rightarrow$  proceed to next step





# Overview of Top-k Search (3)

- Given observed hyperedges,
- Top-k search aims to identify the top-k highest-scoring new hyperedges
  - 1. Search strategy
  - 2. Pruning scheme
  - 3. Top-k selection
    - Select the top-k new hyperedge candidates based on the scoring function

#### **Datasets**

- 10 Real-world datasets from 5 domains:
  - Non-temporal hypergraphs
    - Co-citation: Groups of cited papers in papers (Citeseer, Cora)
    - Authorship: Groups of papers by authors (Cora-A, DBLP-A)
  - Temporal hypergraphs
    - Contact: Groups of people in contact (High, Primary)
    - Email: Groups of email addresses on emails (Enron, Eu)
    - Tags: Groups of tags attached to questions (Math.sx, Ubuntu)



# **Experimental Settings**

- Hyperedge splits in datasets
  - Observed 80%: New 20%
  - Temporal hypergraphs: Old vs. recent
  - Non-temporal hypergraphs: 5 random splits (results are averaged)

- Evaluation measure for accuracy
  - Recall@k: How many true HEs were correctly predicted?

• k: Target number of outcomes (i.e., candidates):  $\{1, 2, 5\} \times |True\ HEs|$ 

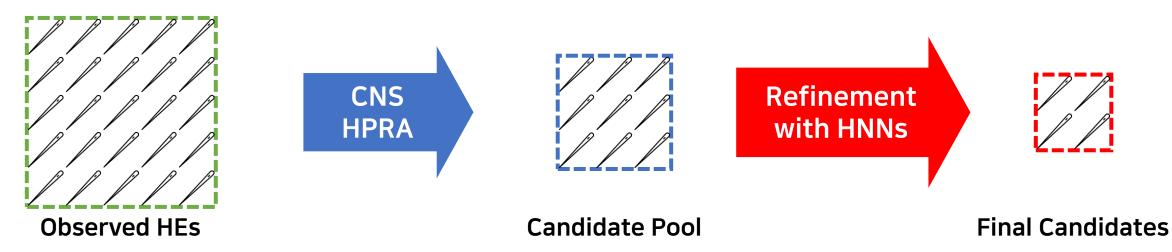
#### **Baseline Methods**

#### 1 Stage only

- Clique negative sampling (CNS) [Patil et al., 2020]: Pick a random hyperedge and replace a random node with an adjacent one
- HPRA [Kumar et al., 2020]: Hyperedge prediction using resource allocation

#### 2 Stages

CNS or HPRA → Refinement with hypergraph neural networks (HNNs)



#### Q1. HyperSearch is Accurate

Across all non-temporal hypergraph settings, HyperSearch performs best



: The best methods



| Dataset                                                   |           | Citeseer  |            |           | Cora       |            |           | Cora-A     |            | DBLP-A    |           |            |  |
|-----------------------------------------------------------|-----------|-----------|------------|-----------|------------|------------|-----------|------------|------------|-----------|-----------|------------|--|
| Method ( $\downarrow$ ) / $\mathcal{K}$ ( $\rightarrow$ ) | 1×        | $2\times$ | $5 \times$ | 1×        | $2\times$  | $5 \times$ | 1×        | $2\times$  | $5 \times$ | 1×        | $2\times$ | $5 \times$ |  |
| HyperSearch (Proposed)                                    | 8.2 (1.6) | 10.9 (1.5 | 17.9 (1.8) | 7.5 (1.8) | 10.0 (2.0) | 14.6 (1.5) | 7.3 (3.6) | 10.9 (2.5) | 16.4 (2.9) | 5.4 (0.1) | 8.4 (0.2) | 14.3 (0.4) |  |
| CNS                                                       | 1.5 (0.2) | 3.3 (0.8) | 8.8 (1.4)  | 2.9 (2.1) | 5.9 (1.5)  | 12.5 (2.1) | 0.3 (0.2) | 0.6 (0.6)  | 2.1 (0.8)  | 0.7 (0.2) | 1.2 (0.1) | 2.7 (0.2)  |  |
| HPRA                                                      | 0.2(0.4)  | 0.3(0.4)  | 0.8(0.6)   | 0.2 (0.2) | 0.6(0.5)   | 2.3 (1.5)  | 0.0 (0.0) | 0.1(0.2)   | 0.1(0.2)   | 0.0(0.0)  | 0.0(0.0)  | 0.1(0.0)   |  |
| MHP                                                       | 2.8 (1.1) | 4.4 (1.3) | 8.9 (1.4)  | 1.2 (0.9) | 2.4 (1.1)  | 6.0 (1.6)  | 0.8 (0.2) | 1.6 (0.2)  | 6.1 (2.8)  | -         | -         | -          |  |
| MHP-C                                                     | 2.3 (1.0) | 5.7 (1.7) | -          | 4.2 (1.3) | 8.0 (1.5)  | -          | 0.4 (0.4) | 1.4 (0.7)  | 2.6 (0.5)  | -         | -         | -          |  |
| AHP-C                                                     | 2.4(0.9)  | 5.2 (1.2) | -          | 4.0 (1.0) | 8.5 (1.8)  | -          | 0.4 (0.4) | 0.9(0.6)   | 1.7 (0.7)  | -         | -         | -          |  |
| SAGNN-C                                                   | 1.8 (0.6) | 4.3 (1.4) | -          | 3.8 (1.7) | 7.5 (2.2)  | -          | 0.3 (0.3) | 0.7(0.5)   | 1.5 (0.6)  | 0.7 (0.1) | 1.2(0.2)  | 2.3(0.4)   |  |
| NHP-C                                                     | 2.3 (0.9) | 5.5 (1.2) | -          | 4.2 (1.3) | 7.4 (1.2)  | -          | 0.4 (0.3) | 0.9(0.3)   | 2.2(0.6)   | 0.9 (0.2) | 1.6 (0.2) | 3.4 (0.2)  |  |
| MHP-H                                                     | 0.3(0.4)  | 0.7(0.6)  | -          | 0.6 (0.5) | 1.9 (1.2)  | 3.4 (1.4)  | 0.1 (0.1) | 0.1(0.1)   | 0.1(0.1)   | -         | -         | -          |  |
| AHP-H                                                     | 0.0(0.0)  | 0.1(0.1)  | -          | 0.5 (0.0) | 1.4 (0.0)  | 1.8 (0.0)  | 0.0 (0.0) | 0.0(0.0)   | 0.0(0.0)   | -         | -         | -          |  |
| SAGNN-H                                                   | 0.2(0.2)  | 0.4(0.3)  | -          | 0.4 (0.4) | 1.2 (0.8)  | 2.1 (1.0)  | 0.0 (0.0) | 0.0(0.0)   | 0.0(0.0)   | 0.0 (0.0) | 0.0(0.0)  | -          |  |
| NHP-H                                                     | 0.1 (0.2) | 0.3 (0.3) | -          | 0.6 (0.5) | 1.9 (1.2)  | 3.4 (1.5)  | 0.1 (0.2) | 0.1 (0.2)  | 0.1 (0.2)  | 0.0 (0.0) | 0.0(0.0)  | -          |  |

<sup>-:</sup> out-oi-time (> 2 days).

### Q1. HyperSearch is Accurate

Across most temporal hypergraph settings, HyperSearch performs best

: The best methods



: The second-best methods

| Dataset                                                   | Enron                                   |                                          |                                           | Eu                                     |                                           |                                              | High                                     |                                            |                                            | Primary                                |                                          |                                             | Ubuntu                   |                               |                           | Math-sx                       |                               |                        |
|-----------------------------------------------------------|-----------------------------------------|------------------------------------------|-------------------------------------------|----------------------------------------|-------------------------------------------|----------------------------------------------|------------------------------------------|--------------------------------------------|--------------------------------------------|----------------------------------------|------------------------------------------|---------------------------------------------|--------------------------|-------------------------------|---------------------------|-------------------------------|-------------------------------|------------------------|
| Method ( $\downarrow$ ) / $\mathcal{K}$ ( $\rightarrow$ ) | 1×                                      | $2\times$                                | $5 \times$                                | 1×                                     | $2\times$                                 | $5 \times$                                   | 1×                                       | $2\times$                                  | $5 \times$                                 | 1×                                     | $2\times$                                | $5 \times$                                  | 1×                       | $2\times$                     | $5 \times$                | 1×                            | $2\times$                     | $5\times$              |
| HyperSearch (Proposed)<br>CNS<br>HPRA<br>MHP              | 16.1<br>10.3<br>1.7<br>0.3              | 25.6<br>16.4<br>5.8<br>0.6               | 33.1<br>29.7<br>9.2<br>3.6                | 12.4<br>5.1<br>3.5<br>0.3              | 17.3<br>10.9<br>5.8<br>1.0                | 26.8<br>22.0<br>10.2<br>3.4                  | 14.8<br>12.6<br>9.0<br>0.9               | 18.3<br>13.8<br>14.8<br>2.9                | 27.3<br>18.1<br>28.1<br>7.4                | 7.3<br>4.5<br>4.7<br>4.3               | 7.3<br>8.1<br>7.7                        | 20.8<br>11.9<br>20.4<br>21.1                | 12.0<br>1.6<br>1.1       | 15.4<br>2.9<br>2.0            | 20.6<br>6.7<br>4.4        | 12.1<br>3.4<br>2.2            | 17.3<br>6.0<br>3.9            | 24.5<br>11.7<br>8.1    |
| MHP-C<br>SAGNN-C<br>NHP-C<br>MHP-H<br>SAGNN-H<br>NHP-H    | 7.6<br>6.0<br>13.3<br>4.6<br>2.8<br>4.5 | 14.9<br>8.2<br>20.3<br>5.4<br>3.4<br>5.2 | 22.0<br>14.6<br>29.8<br>9.5<br>7.1<br>9.5 | 7.4<br>8.6<br>8.1<br>4.4<br>5.4<br>4.6 | 14.1<br>16.0<br>14.9<br>6.5<br>8.1<br>6.7 | 22.7<br>24.5<br>23.3<br>14.2<br>17.8<br>14.2 | 4.3<br>7.2<br>9.7<br>9.1<br>10.2<br>12.4 | 5.7<br>8.5<br>11.6<br>16.3<br>18.1<br>16.6 | 8.3<br>9.9<br>13.7<br>31.8<br>34.1<br>32.7 | 4.1<br>5.1<br>5.3<br>5.4<br>4.5<br>6.0 | 5.7<br>7.9<br>8.5<br>11.4<br>9.4<br>11.7 | 9.6<br>11.9<br>13.1<br>22.6<br>19.5<br>22.5 | 2.3<br>1.8<br>2.0<br>1.6 | 4.3<br>3.5<br>-<br>3.5<br>2.8 | -<br>8.7<br>7.1<br>-<br>- | 4.7<br>3.6<br>-<br>3.7<br>2.6 | 7.9<br>6.1<br>-<br>6.5<br>4.6 | 14.5<br>11.2<br>-<br>- |

<sup>-:</sup> out-of-time (> 2 days).

#### Q1. Case Studies: Semantically Coherent Predictions

• Top-scoring predicted hyperedges (size 2–5) on Tags datasets

#### Math examples:

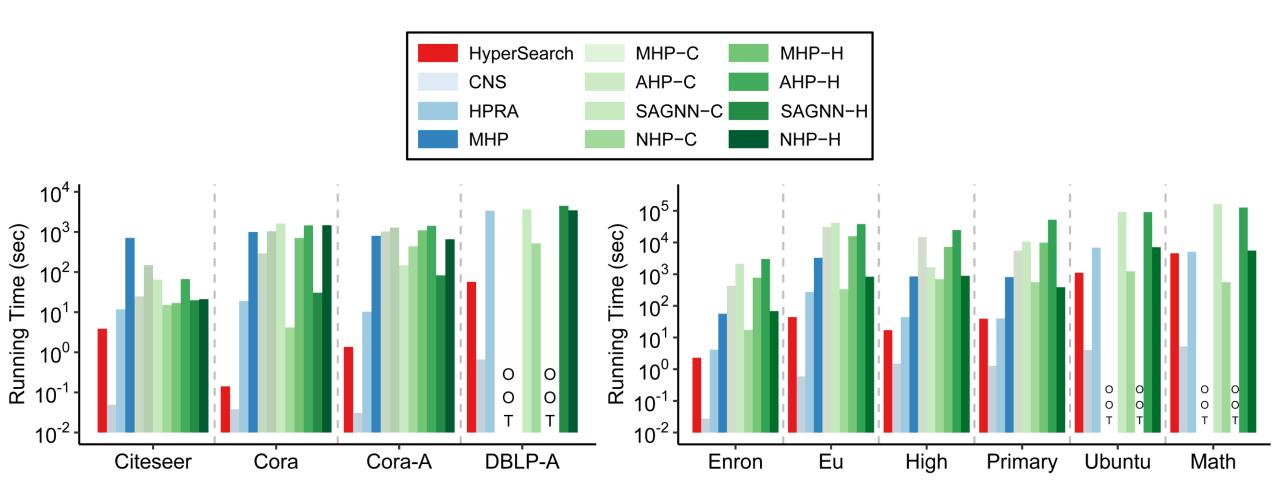
- [ring-theory, noetherian]
- [matrices, vectors, vector-spaces]
- [group-theory, finite-groups, fieldtheory, abstract-algebra]
- [calculus, sequences-and-series, real-analysis, integration, convergence]

#### Ubuntu examples:

- [drivers, xorg]
- [boot, grub2, btrfs]
- [dual-boot, boot, live-usb, grub2]
- [partitioning, grub2, 16.04, dual-boot, boot]

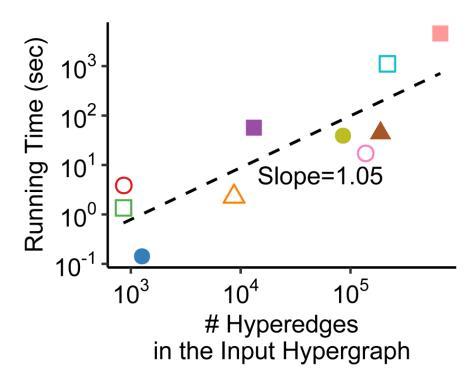
# Q2. HyperSearch is Fast

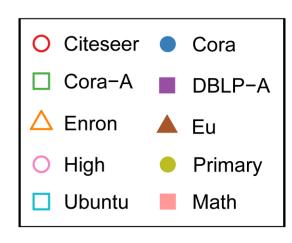
HyperSearch runs faster than deep learning-based methods in most cases



# Q2. HyperSearch is Scalable

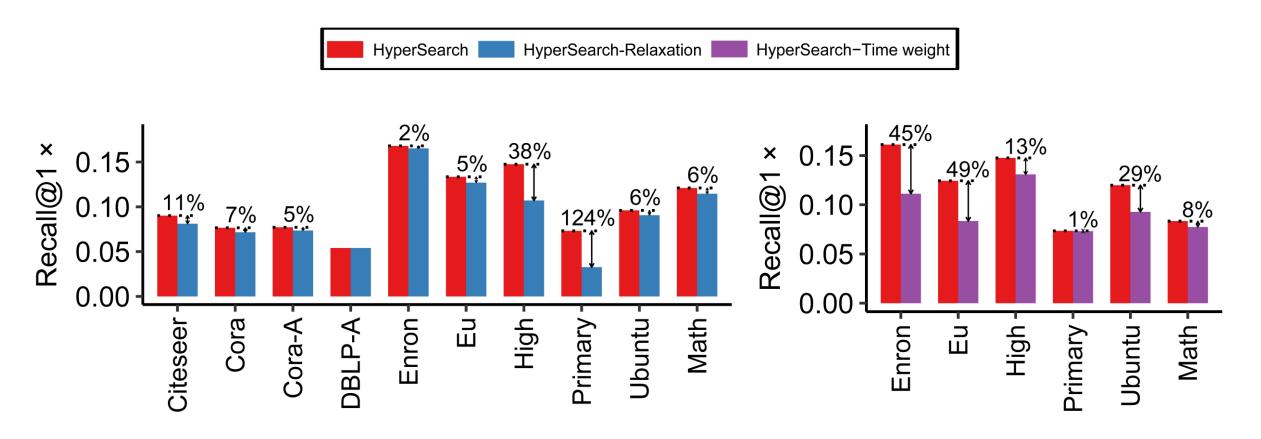
Runtime of HyperSearch scales almost linearly with the number of hyperedges





# Q3. Each Component Contributes to its Performance

• In most cases, HyperSearch outperforms its variants with missing components



Introduction Observations Conclusion Proposed Method Experiments

#### Conclusion

We proposed HyperSearch to predict new hyperedges from a vast search space

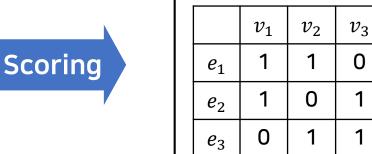


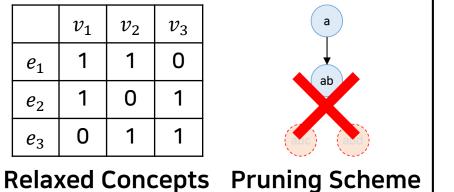
#### **Observations**

- (1) Overlap between HEs
- (2) Temporal Bias



#### **Accurate and Efficient Search**

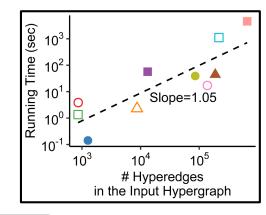






#### **Strong Performance**

| Dataset                                                   |           | Citeseer  |            |           | Cora       |            |           | Cora-A     |            | DBLP-A    |           |            |  |
|-----------------------------------------------------------|-----------|-----------|------------|-----------|------------|------------|-----------|------------|------------|-----------|-----------|------------|--|
| Method ( $\downarrow$ ) / $\mathcal{K}$ ( $\rightarrow$ ) | 1×        | $2\times$ | $5 \times$ | 1×        | $2\times$  | $5 \times$ | 1×        | $2\times$  | $5 \times$ | 1×        | $2\times$ | 5×         |  |
| HyperSearch (Proposed)                                    | 8.2 (1.6) | 10.9 (1.5 | 17.9 (1.8) | 7.5 (1.8) | 10.0 (2.0) | 14.6 (1.5) | 7.3 (3.6) | 10.9 (2.5) | 16.4 (2.9) | 5.4 (0.1) | 8.4 (0.2) | 14.3 (0.4) |  |
| CNS                                                       | 1.5 (0.2) | 3.3 (0.8) | 8.8 (1.4)  | 2.9 (2.1) | 5.9 (1.5)  | 12.5 (2.1) | 0.3 (0.2) | 0.6 (0.6)  | 2.1 (0.8)  | 0.7 (0.2) | 1.2(0.1)  | 2.7 (0.2)  |  |
| HPRA                                                      | 0.2 (0.4) | 0.3(0.4)  | 0.8(0.6)   | 0.2(0.2)  | 0.6(0.5)   | 2.3 (1.5)  | 0.0(0.0)  | 0.1(0.2)   | 0.1(0.2)   | 0.0(0.0)  | 0.0(0.0)  | 0.1(0.0)   |  |
| MHP                                                       | 2.8 (1.1) | 4.4 (1.3) | 8.9 (1.4)  | 1.2 (0.9) | 2.4 (1.1)  | 6.0 (1.6)  | 0.8 (0.2) | 1.6 (0.2)  | 6.1 (2.8)  | -         | -         | -          |  |
| MHP-C                                                     | 2.3 (1.0) | 5.7 (1.7) | -          | 4.2 (1.3) | 8.0 (1.5)  | -          | 0.4 (0.4) | 1.4 (0.7)  | 2.6 (0.5)  | -         | -         | -          |  |
| AHP-C                                                     | 2.4 (0.9) | 5.2 (1.2) | -          | 4.0 (1.0) | 8.5 (1.8)  | -          | 0.4(0.4)  | 0.9(0.6)   | 1.7(0.7)   | -         | -         | -          |  |
| SAGNN-C                                                   | 1.8 (0.6) | 4.3 (1.4) | -          | 3.8 (1.7) | 7.5 (2.2)  | -          | 0.3 (0.3) | 0.7(0.5)   | 1.5 (0.6)  | 0.7 (0.1) | 1.2(0.2)  | 2.3(0.4)   |  |
| NHP-C                                                     | 2.3 (0.9) | 5.5 (1.2) | -          | 4.2 (1.3) | 7.4 (1.2)  | -          | 0.4(0.3)  | 0.9(0.3)   | 2.2(0.6)   | 0.9 (0.2) | 1.6 (0.2) | 3.4 (0.2)  |  |
| MHP-H                                                     | 0.3 (0.4) | 0.7 (0.6) | -          | 0.6 (0.5) | 1.9 (1.2)  | 3.4 (1.4)  | 0.1 (0.1) | 0.1(0.1)   | 0.1(0.1)   | -         | -         | -          |  |
| AHP-H                                                     | 0.0(0.0)  | 0.1(0.1)  | -          | 0.5(0.0)  | 1.4 (0.0)  | 1.8 (0.0)  | 0.0(0.0)  | 0.0(0.0)   | 0.0(0.0)   | -         | -         | -          |  |
| SAGNN-H                                                   | 0.2(0.2)  | 0.4(0.3)  | -          | 0.4(0.4)  | 1.2(0.8)   | 2.1 (1.0)  | 0.0(0.0)  | 0.0(0.0)   | 0.0(0.0)   | 0.0(0.0)  | 0.0(0.0)  | -          |  |
| NHP-H                                                     | 0.1(0.2)  | 0.3(0.3)  | -          | 0.6(0.5)  | 1.9 (1.2)  | 3.4 (1.5)  | 0.1(0.2)  | 0.1(0.2)   | 0.1(0.2)   | 0.0(0.0)  | 0.0(0.0)  | -          |  |



Source code and datasets are available at <a href="https://github.com/jin-choo/HyperSearch/">https://github.com/jin-choo/HyperSearch/</a>





# HyperSearch: Prediction of New Hyperedges through Unconstrained yet Efficient Search



**Hyunjin Choo** 



Fanchen Bu



**Hyunjin Hwang** 



Young-Gyu Yoon



**Kijung Shin** 

#### References

[Liben-Nowell et al., 2003] Liben-Nowell, David, and Jon Kleinberg. "The link prediction problem for social networks." CIKM 2003

[Wang, Peng, et al, 2015] Wang, Peng, et al. "Link prediction in social networks: the state-of-the-art." Science China Information Sciences (2015)

[Wang, Xi et al., 2014] Wang, Xi, and Gita Sukthankar. "Link prediction in heterogeneous collaboration networks." Social network analysis-community detection and evolution (2014)

[Lande, et al., 2020] Lande, Dmytro, et al. "Link prediction of scientific collaboration networks based on information retrieval." WWW 2020

[Jin, Shuting, et al., 2023] Jin, Shuting, et al. "A general hypergraph learning algorithm for drug multi-task predictions in micro-to-macro biomedical networks." PLOS Computational Biology (2023)

[Saifuddin, K. M., et al., 2023] Saifuddin, K. M., et al. "Hygnn: Drug-drug interaction prediction via hypergraph neural network." ICDE 2023

[Hwang et al., 2022] H. Hwang et al., "Ahp: Learning to negative sample for hyperedge prediction", SIGIR 2022

[Yu et al., 2024] H. Yu et al., "Prediction Is NOT Classification: On Formulation and Evaluation of Hyperedge Prediction", HDM 2024

[Zhang, Ruochi et al., 2020] Zhang, Ruochi et al., "Hyper-SAGNN: a self-attention based graph neural network for hypergraphs." ICLR 2020

[Yadati et al., 2020] Yadati, Naganand et al., "Nhp: Neural hypergraph link prediction." CIKM 2020

[Patil et al., 2020] P. Patil et al., "Negative sampling for hyperlink prediction in networks", PAKDD 2020

[Kumar et al., 2020] T. Kumar et al., "HPRA: Hyperedge prediction using resource allocation", WebSci 2020