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Group Interactions Are Everywhere
Man is by nature a social animal.

- Aristotle (384 – 322 BC; Ancient Greek Philosopher)
• Group interactions are a fundamental part of our world
• Co-authorship: Scholars collaborate on a research paper
• Online Q&A: A user posts a question and others join in to answer
• Email/Social-media messages: A user sends a message to others
• Movie cast: Actors perform together in a film
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Observation: Anchors in Group Interactions
Every friend group has that one person who keeps everyone together.

- Anonymous Redditor
• In each group interaction, there is often an “anchor”, a particularly 

important person that brings together the group members
• Co-authorship: The first/last author of a paper
• Online Q&A: The questioner who posts a question
• Email/Social-media messages: The sender who sends a message
• Movie cast: The leading actor in a film
• In this work, we study how we can identify 

anchors in real-world group interactions
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Group Anchor Identification: Applications
• Group interaction prediction: Anchors often initiate group formation
 Identifying them helps predict future groups

• E.g., future academic/business collaborations
• Engagement management: Anchors often play important roles 
 Understanding them helps maintain group health and activity

• E.g., Social-media community management
• Targeted marketing: Anchors are influencers within their groups 
 Reaching them can be more effective for marketing

• E.g., product seeding and influencer marketing
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Group Anchor Identification: Problem Statement

• We formulate it as an optimization problem on hypergraphs
• Hypergraph: 𝐻𝐻 = (𝑉𝑉,𝐸𝐸) with node set 𝑉𝑉 and hyperedge set 𝐸𝐸
• A node = a person; A hyperedge = a group interaction among people
• Below is an example of co-authorship hypergraph
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Group Anchor Identification: Problem Statement

• We introduce the concepts of domains and anchor roles
• We consider real-world hypergraphs, each with a known domain 𝒟𝒟
• For each domain, we identify its anchor role ℛ(𝒟𝒟), the role of the 

anchor in each group in that domain
• For the co-authorship domain, for each paper, either the first or last author is 

arguably the anchor, and we consider both alternative cases
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Domain 𝒟𝒟 Nodes Anchor Role ℛ(𝒟𝒟)
𝒟𝒟co: Co-authorship Authors of a paper First/last author
𝒟𝒟qa: Online Q&A Users involved in a question Questioner

𝒟𝒟em: Email People involved in an email Sender
𝒟𝒟so: Social network Users involved in a communication Initiator
𝒟𝒟mo: Movie cast Actors performing in a movie Leading actor
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Group Anchor Identification: Problem Statement

• Given: (1) A real-world hypergraph 𝐻𝐻 = 𝑉𝑉,𝐸𝐸 and (2) known 
anchors in some groups 𝐸𝐸′ ⊆ 𝐸𝐸

• In each 𝑒𝑒′ ∈ 𝐸𝐸′, we know the node 𝑣𝑣′ ∈ 𝑒𝑒′ that has the anchor role ℛ(𝒟𝒟)
• Label scarcity: We consider the realistic scenarios where the proportion of 

groups with known anchors is limited

• To predict: The anchors in the remaining groups 𝐸𝐸 ∖ 𝐸𝐸′
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Group Anchor Identification: Group-Dependence

• The group anchors are group-dependent
• E.g., 4 is the anchor in the group {1,2,4} does NOT necessarily mean 4 

is also the anchor in other groups such as {3,4,5} and 4,5,6
• Similarly, 6 is a non-anchor in the group {6,7,8} does NOT necessarily 

mean 6 cannot be the anchor of other groups such as 4,5,6
• In the example, it is possible that 6 is the anchor in the group 4,5,6
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High-Level Idea: Observation-Driven Approach

• Idea: Instead of using a sophisticated "black-box" model, we first 
observe patterns in the real-world group interaction data, and then 
design a lightweight method based on those insights

• Why is this a good approach for this problem?
• Well handles label scarcity: With very little training data, complex models can 

fail, while a lightweight, observation-driven model is more robust
• Intuitive and interpretable: The final method is easy to understand because 

it's directly motivated by real-world patterns
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Observations: Settings

• Since we consider label scarcity in our problem, we also impose this 
constraint for our observations

• We establish our observations and the patterns with the same proportion 
(7.5%) of known anchors as in our main experiments

• We assume no node or edge attributes (i.e., external features) are 
given, which is true for the real-world datasets used in this work

• That is, we only have information from (1) the hypergraph topology and (2) 
the label information of the known group anchors 

14



[ICDM’25] Identifying Group Anchors in Real-World Group Interactions Under Label ScarcityBu, Lee, Choe, and Shin

Observations: Datasets

• We use 13 datasets from 5 different domains
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Observation 1: Informative Topological Features

• Recall: We only have information from (1) the hypergraph topology
and (2) the label information of the known group anchors 

• Observation 1 focuses on part (1): What can the topology tell us?
• Topology  Topological features  But are they helpful?
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Observation 1: Informative Topological Features

We can identify group anchors fairly accurately 
using only topological features.
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• What is the intuition behind this observation?
• Let’s consider one of the simplest topological features: node degree
• Co-authorship: High degree  Senior scholar  Likely last author
• Online Q&A: Low degree  New user  Likely questioner
• Movie cast: High degree  Famous actor  Likely leading actor
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• What evidence do we have?
• We report the accuracy of 

predicting the highest- or 
lowest-degree node in each 
group as the anchor, and 
compare it with SOTA baselines

• This simple method shows 
considerable performance!
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Observation 2: Stable Cross-Group Anchorship

• Recall: We only have information from (1) the hypergraph topology
and (2) the label information of the known group anchors 

• Observation 2 focuses on part (2): What can the known group 
anchors tell us?

• Anchors are group-dependent  But can we still observe any 
correlations between the anchorship in different groups?
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Observation 2: Stable Cross-Group Anchorship

If a node is (not) the anchor in some groups, 
it is likely (not) the anchor in other groups too.
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• What is the intuition behind this observation?
• Co-authorship: Last author of several papers  Usually professor 

Likely the last author of other papers
• Email: Sender of several emails Maybe in charge of announcement 
 Likely the sender of other emails

• Movie cast: Leading actor in several movies Maybe famous movie 
star  Likely the leading actor in other movies
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• What evidence do we have?
• Anchor purity of node 𝒗𝒗: When we 

randomly pick two groups containing 
𝑣𝑣, the probability that 𝑣𝑣 is the anchor 
in both or neither of the two groups

• The average anchor purity in real-
world group interactions v.s. 
randomized ones  It is much higher 
in real-world group interactions!
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• Observation 2 tells us the cross-group stability of anchorship
• What mechanism is possibly behind this observation?
• We hypothesize that each node 𝑣𝑣 has a global anchor strength shared 

across all groups involving 𝑣𝑣
• The global anchor strength of 𝑣𝑣 indicates the overall likelihood of 𝑣𝑣

being the anchor across different groups
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Observation 2: Stable Cross-Group Anchorship

• Hypothesis: Each node 𝑣𝑣 has a global anchor strength
• What evidence do we have?
• Anchor proportion of node 𝒗𝒗: The proportion of the groups where 𝑣𝑣

is the anchor, among all the groups involving 𝑣𝑣
• The proportion of groups where the node with the highest anchor 

proportion is the anchor is very high!  Such global strengths exist!
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If a node is (not) the anchor in some groups, 
it is likely (not) the anchor in other groups too.
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Observation 2: Stable Cross-Group Anchorship

• The proportion of groups where the node with the highest anchor 
proportion is the anchor is very high!  Such global strengths exist!

• This is not a “method”! This is only used to validate our hypothesis
that there exist global strengths that can well-explain the anchorship
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If a node is (not) the anchor in some groups, 
it is likely (not) the anchor in other groups too.
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Proposed Method ANCHORRADAR: Overview

• The proposed method ANCHORRADAR has two stages
• Stage 1 is based on observation 1, and Stage 2 is based on observation 2

• Stage 1: Train an MLP to learn topological scores to fit known anchors
• Stage 2: Train anchor strengths with Stage-1 scores as references
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Proposed Method ANCHORRADAR: Stage 1
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Observation 1: In real-world group interactions, topological 
features are informative about group anchors.

• Train a model to exploit the 
correlations between topological 
features and anchorship

• Use a lightweight architecture
• Specifically, MLP

• Use topological features as the 
only inputs to fit known anchors
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Proposed Method ANCHORRADAR: Stage 1
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Observation 1: In real-world group interactions, topological 
features are informative about group anchors.

• We followed existing works, using (1) node degree, (2) eigenvector 
centrality, (3) PageRank centrality, and (4) coreness
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Proposed Method ANCHORRADAR: Stage 1
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Observation 1: In real-world group interactions, topological 
features are informative about group anchors.

• We build 𝑋𝑋 using both hypergraph-level and group-level aggregations 
and normalizations  A feature vector for each node-group pair 𝑣𝑣, 𝑒𝑒
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Proposed Method ANCHORRADAR: Stage 1
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Observation 1: In real-world group interactions, topological 
features are informative about group anchors.

• Each node-group pair (𝑣𝑣, 𝑒𝑒) has its topological score 𝑠𝑠𝑣𝑣;𝑒𝑒
(1)

 Higher = the node 𝑣𝑣 is more likely the anchor in the group 𝑒𝑒
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Proposed Method ANCHORRADAR: Stage 1
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Observation 1: In real-world group interactions, topological 
features are informative about group anchors.

• Each topological score 𝑠𝑠𝑣𝑣;𝑒𝑒
(1) is computed from topological features 𝑋𝑋

transformed by an MLP
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Proposed Method ANCHORRADAR: Stage 1
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Observation 1: In real-world group interactions, topological 
features are informative about group anchors.

• Minimizing loss ℒ(1)  In each group 𝑒𝑒, its anchor 𝐴𝐴(𝑒𝑒) has a higher 
score compared to the other nodes in 𝑒𝑒
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Proposed Method ANCHORRADAR: Stage 2

• After Stage 1, we have topological scores 𝑠𝑠𝑣𝑣;𝑒𝑒
(1)’s

• For each node 𝑣𝑣, its scores are defined locally within each group 𝑒𝑒
• Observation 2 tells us the cross-group stability of anchorship, and we 

also have the hypothesis that each node 𝑣𝑣 has a global anchor 
strength shared across all groups involving 𝑣𝑣
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Observation 2: In real-world group interactions, whether a 
node is the group anchor or not is overall stable.
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Proposed Method ANCHORRADAR: Stage 2

• Learn a global anchor strength for each node 𝑣𝑣, so that
• (1) The strengths well explain the known anchors

• In each group, the anchor should have the highest strength
• (2) The strengths well align with the topological scores from Stage 1
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Proposed Method ANCHORRADAR: Stage 2

• Learn a global anchor strength 𝑠𝑠𝑣𝑣
(2)

for each node 𝑣𝑣, so that
• (1) The strengths well explain the 

known anchors
• In each group, the anchor should have the 

highest strength
• (2) The strengths well align with the 

topological scores from Stage 1

• Minimizing ℒ1
(2)  In each group 𝑒𝑒, 

its anchor 𝐴𝐴(𝑒𝑒) has a higher strength 
compared to the other nodes in 𝑒𝑒
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Proposed Method ANCHORRADAR: Stage 2

• Learn a global anchor strength 𝑠𝑠𝑣𝑣
(2)

for each node 𝑣𝑣, so that
• (1) The strengths well explain the 

known anchors
• In each group, the anchor should have the 

highest strength
• (2) The strengths well align with the 

topological scores from Stage 1

• Minimizing ℒ2
(2)  In each group 𝑒𝑒, 

the Stage-1 topological scores 𝑠𝑠⋅;𝑒𝑒
(1)’s 

and the Stage-2 anchor strengths 
𝑠𝑠⋅(2)’s are well-aligned

37



[ICDM’25] Identifying Group Anchors in Real-World Group Interactions Under Label ScarcityBu, Lee, Choe, and Shin

Proposed Method ANCHORRADAR: Stage 2

• The final loss is a weighted sum of 
the two sub-losses ℒ1

(2) and ℒ2
(2)

• Loss term coefficient 𝛼𝛼(2) adjusts the 
emphasis between them

• Using a higher 𝛼𝛼(2)

We emphasize ℒ2
(2) more 

We emphasize the alignment 
between the two stages more
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Proposed Method ANCHORRADAR: Stage 2

• After training, we get the global 
anchor strength 𝑠𝑠𝑣𝑣

(2) of each node 𝑣𝑣
• In each group 𝑒𝑒, 𝐴̂𝐴(𝑒𝑒) is the node 

with the highest anchor strength
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Proposed Method ANCHORRADAR: Stage 2

• In each group 𝑒𝑒, 𝐴̂𝐴(𝑒𝑒) is the node 
with the highest anchor strength

• Then we do global aggregation: For 
each node 𝑣𝑣, we aggregate its 
anchorship information from all the 
groups involving 𝑣𝑣

• If 𝑣𝑣 is the known anchor 𝐴𝐴(𝑒𝑒) in a 
group 𝑒𝑒 it gets 𝑤𝑤(2) score

• If 𝑣𝑣 is the predicted anchor 𝐴̂𝐴(𝑒𝑒) in a 
group 𝑒𝑒 it gets 1 score

• The global aggregation weight 𝑤𝑤(2)

is used to give known information 
more credits than our predictions
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Proposed Method ANCHORRADAR: Stage 2

• In each group 𝑒𝑒, the final prediction 
𝐴̃𝐴(𝑒𝑒) is the node with the highest 
globally aggregated score
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Proposed Method ANCHORRADAR: Stage 2

• Intuition behind global aggregation: 
It helps correct local errors, and thus 
increase the robustness

• Can be understood as majority vote

• Example: The local error in the group 
{1,2,5} is corrected after global 
aggregation
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Group 
𝒆𝒆

Ground truth 
𝑨𝑨(𝒆𝒆)

Local pred.
�𝑨𝑨 𝒆𝒆

Final pred.
�𝑨𝑨(𝒆𝒆)

{1,2,3} 1 1 1
{1,2,4} 1 1 1
{1,2,5} 1 2 1
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Experimental Settings: Datasets

• We use 13 datasets from 5 different domains
• Train/Validation/Test = 7.5%/2.5%/90%
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Experimental Settings: Baselines

• Since we are the first to consider the problem of group anchor 
identification, no immediate baselines exist

• We adapt existing methods originally proposed for a related 
problem, edge-dependent node classification

• We have 9 baselines in total:
• WHATsNet, CoNHD-U, CoNHD-I, HNHN, HGNN, HCHA, HAT, UniGCN, HNN
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Results: ANCHORRADAR Achieves Higher Accuracy

• The proposed method ANCHORRADAR achieves the highest accuracy 
than all the baselines in most cases

• Why? Under label scarcity, the baselines that use deep neural 
networks and thus are heavily parameterized are prone to overfitting

• ANCHORRADAR’s lightweight (MLP architecture), observation-driven 
design is more robust and alleviates this issue
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Results: ANCHORRADAR Uses Less Time and Parameters

• On average, the proposed method ANCHORRADAR uses 10.2× less 
training time than the fastest baseline
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Results: ANCHORRADAR Uses Less Time and Parameters

• On average, the proposed method ANCHORRADAR uses 43.6× fewer 
learnable parameters than the most lightweight baseline
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Results: Each Component in ANCHORRADAR is Helpful

48

• Variants of ANCHORRADAR excluding one component:
• Stage 1: Excluding Stage 2, using the Stage-1 scores for final prediction
• Stage 2: Excluding Stage 1, learning strengths without Stage 1's guidance
• No global aggregation: Excluding the “majority vote” step
• No local features: Excluding the group-specific topological features

• The full-fledged ANCHORRADAR outperforms all the variants, showing:
• Every component positively contributes to its performance, and
• The two stages create synergy
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Results: ANCHORRADAR is Helpful for Downstream Task

• Task: Group-interaction prediction
• Specifically, distinguish real and fake group interactions

• Backbone: VilLain (a self-supervised method on hypergraphs)
• VilLain obtains group (hyperedge) embeddings from topology

• We include group-level statistics of anchor strengths (e.g., mean and 
standard deviation) to enrich the group embeddings from VilLain

• The additional information from ANCHORRADAR further helps VilLain to 
better distinguish real and fake group interactions
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[VilLain] Geon Lee et al. "VilLain: Self-Supervised Learning on Homogeneous Hypergraphs without Features via Virtual Label Propagation." WWW’24
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Conclusion

In this work, we…
• Proposed New Concept and Problem: Introduced the concept of group 

anchors, and the novel and practical problem of identifying them
• Made Key Observations: Grounded our work in real-world data, showing 

empirical patterns of anchors in real-world group interactions
• Developed Effective Algorithm: Proposed ANCHORRADAR, an intuitive, 

lightweight, and observation-driven method
• Ran Extensive Experiments: Demonstrated that ANCHORRADAR is more 

accurate, faster, and lighter than baselines
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Appendix, Code, and Datasets: bit.ly/anchor_rader_ICDM25

https://bit.ly/anchor_rader_ICDM25
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