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Graphs

▪What are Graphs?
▪ Graphs are relational data

▪ Consists of nodes and edges

▪Graphs are everywhere!
▪ Can represent a wide range 

of real-world networks
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Web Networks
Node = Webpage
Edge = Hyperlinks

Social Networks
Node = User

Edge = Follow

Transportation Networks
Node = Region

Edge = Road Connection

Co-Purchase Networks
Node = Product

Edge = Often Co-Purchased



Graph Neural Networks (GNNs)

▪Graph Neural Networks (GNNs)
▪ Can solve various graph-related tasks

▪ Learn graph representation

▪ To enhance its expressiveness:
▪ Graph Attention

▪ Learns the weight for feature propagation

▪ Deep GNN
▪ Increases receptive fields

▪ Stacks non-linearity
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Goal of the Present Study

Question of Interest

Can existing graph attention remain expressive over deep layers? 

How to design an expressive deep graph attention? 

Can it solve node classification problem?
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▪ Edge Attention 𝑨(𝒌)

▪ Intuition: learns importance within each hop

▪ Models: GAT[1], FAGCN[2]

▪Hop Attention 𝚪(𝒌)

▪ Intuition: learns importance of each hop

▪ Models: GPRGNN[3], DAGNN[4]

Graph Attention for GNNs
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Illustration of Hop Attention
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▪ All Graph Attention Models Suffer From Two Problems
▪ P1: Vulnerability of Node Feature Over-Smoothing

▪ (Informal) The attention coefficients become identical for over-smoothed node features

▪ P2: Smooth Cumulative Attention
▪ (Informal) Cumulative attention vectors become identical for all nodes at very deep layer

▪ Both problems are critically contrary to the goal of attention

Theoretical Limitations to Deep Graph Attention
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AERO-GNN : Overview

▪We propose Attentive Deep Propagation GNN (AERO-GNN)

▪Model Overview
▪ At every propagation layer 𝑘, AERO-GNN learns 𝑨(𝒌) and 𝚪(𝒌)
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AERO-GNN : Attention Functions

▪Design Question : 
▪ How do we design an expressive deep graph attention?

▪ Key Properties : 
▪ Key 1. Stacking non-linearity

▪ Key 2. Learn both 𝑨(𝒌) and 𝚪(𝒌) (edge and hop attention)

▪ Key 3. Use features from the previous layers 𝒁

▪ Key 4. Use negative attention

▪ Key 5. Have node-adaptive hop attention 𝚪(𝒌)

13



AERO-GNN : Attention Functions

▪ Bottom Line : 
▪ Attention functions of AERO-GNN is flexible and expressive!

▪ They allow AERO-GNN to mitigate problems of deep graph attention.
▪ Vulnerability to Over-Smoothing  &  Smooth Cumulative Attention
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Properties of Attention Functions

Stacking 

Non-Linearity
Edge & Hop 𝒁 as Input

Negative 

Attention

Node-

Adaptive

GATv2  X X X X
FAGCN  X   X

GPRGNN X X X  X
DAGNN X X X X 

AERO-GNN     
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Performance (Mean ± Std, 100 trials)

▪ AERO-GNN achieves the best overall performance (See high A.R.)!
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Performance Over Layers
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▪ AERO-GNN has 
▪ Highest best performance across model depth (see ★ in the Figure)

▪ Better performance over layers 𝑘 (see trend in the Figure)
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Summary 

Problem

Two Limitations to 
Deep Graph Attention

Solution: AERO-GNN

Theoretically and Empirically
Mitigates the Problems
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Attention-Based GNNs

A larger focus has been placed on 
designing a more expressive layer

- with new designs

- with new loss terms 

- with more features

Deep GNNs

Making deeper GNNs have been an 
important setback to GNN research

- over-smoothing 

- over-squashing 

- over-correlation 

We Bridge the Two

The two are complementary

Implications for Graph Learning
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