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Random Graph Models (RMGs)

WHAT WE CALL RANDOM IS JUST PATTERNS WE CAN'T DECIPHER.
- Chuck Palahniuk (1962 —; American novelist)

e Random graph models (RGMs) are about
generating random graphs that reproduce
patterns observed in real-world graphs oY

* Good RGMs should generate graphs that... i‘*,: I. |

(1) reproduce patterns commonly observed
in real-world networks,

£

r{:\?

(2) stay variable (i.e., not too similar), and Y
(3) are feasible for computing and / h
controlling graph statistics IEALWORI] \, Z
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Real-World Application of RGMs

* Generate synthetic but similar-to-real-world graphs

* Can be used as substitutes, especially when real-world data are
scarce or unavailable due to some practical concerns (e.g., privacy)
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Real-World Application of RGMs

* Graph algorithm testing: If the algorithm works well on random
graphs, we expect it to work well on real-world graphs too

* Statistical testing: We examine the statistical significance of some
observations by comparing real-world graphs with random ones

* Graph anonymization: Release random graphs instead of the original
data that might be sensitive, private, etc.
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Examples of RGMs

* Erd6s-Rényi model: Given overall density
* Reproducible patterns: Not really. Mainly used for mathematical purposes

* Chung-Lu model: Given degree sequences
* Reproducible patterns: Heavy-tailed degrees, small-world phenomenon...

 Stochastic block model: Given node partitions and densities
between/within partitions

* Reproducible patterns: Community structure, core-periphery, assortativity...

* Kronecker model: Use Kronecker power as edge probabilities
* Reproducible patterns: Fractal structure, heavy-tailed degrees,
small-world phenomenon...

« Common point: Edge existences are independent to each other!

[Reference] Paul Erdés and Alfréd Rényi. "On Random Graphs I." Publicationes Mathematicae Debrecen (1959).

[Reference] Fan Chung and Linyuan Lu. "Connected Components in Random Graphs with Given Expected Degree Sequences." Annals of Combinatorics (2002).
[Reference] Paul W. Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. "Stochastic Blockmodels: First Steps." Social Networks (1983).

[Reference] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and Zoubin Ghahramani. "Kronecker Graphs: An Approach to Modeling Networks." Journal of
Machine Learning Research (20103/.
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Edge Independent Graph Models: Merits

* Edge independent graph models: All random graph models that
assume independent edge existences

* Simplicity: Mathematically concise and elegant
* Tractability: Easy to analyze and compute graph statistics
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Edge Independent Graph Models: Merits

* Edge independent graph models: All random graph models that
assume independent edge existences

* Simplicity: Mathematically concise and elegant
* Tractability: Easy to analyze and compute graph statistics

_YES, BUTIAT WHAT COST?
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Edge Independent Graph Models: Limitation

* Overlap: The similarity between generated random graphs
* High overlap = Low variability @
* Theorem: For edge independent graph models, the expected number

of triangles is bounded by an increasing function on overlap
* Implication: If you want high triangle-density, you must sacrifice variability

* High triangle-density is a common pattern in real-world networks

UARIAE

|
|
S

LY MANG

[Reference] Sudhanshu Chanpuriya, Cameron Musco, Konstantinos Sotiropoulos, and Charalampos Tsourakakis. "On the Power of
Edge Independent Graph Models." NeurlPS 2021.
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Our Idea: Go Beyond Edge Independency

ADOPT WHAT IS USEFUL AND DISCARD WHAT IS USELESS.
- Qichao Liang (1873 — 1929; Chinese journalist)

* Q: Can we go beyond edge independency,
breaking through the limitations, but still
keeping the merits of the edge
independent graph models?
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Novel Perspective: RGMs as Decomposition of Distribution

« Random graph model (RGM)
e = distribution of graphs o
» = multivariate distribution on edges SABILF '

* = marginal probability of each edge +
(in)dependency between edges o
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Novel Perspective: RGMs as Decomposition of Distribution

« Random graph model (RGM)
e = distribution of graphs &
» = multivariate distribution on edges SABILT '

e = marginal probability of each edge +
(in)dependency between edges IR

* Eureka! We can keep the marginal . j
probabilities but introduce

dependency between them! ( -
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Edge Probability Graph Models (EPGMs): Definition

* Consider RGMs that generate graphs onn nodes (v = 1,2, ...,n)

* Given marginal edge probabilities p: (’21) — [0,1], the set of EPGMs
w.r.t. p consists of all the RGMs that satisfy the edge probabilities p

* Such EPGMs share the same marginal edge probabilities p, but vary in
how the edge existences depend on each other
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Edge Probability Graph Models (EPGMs): Examples

_______________________________________________________________________

Gg

Gq G G3 Gy Gs Ge G7
oo |Pricy) |Prics) PriGa) iG] PriGel PriGe] PriG) Pl

(1,2) p(1,2)=1/2 RGM; 3/16 3/16 1/16 3/16 1/16  3/16  1/16  1/16
(1,3) p(1,3)=1/4 RGM, 1/4 1/8 0 1/4 1/8 1/8 0 1/8
23) p(23)=1/2 RGM; 1/2 0 0 0 0 1/4 0 1/4

* RGM;: Edge independent (minimally dependent)
* RGM,: Between RGM; and RGM; (intermediately dependent)
* RGM3: Maximally dependent
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Edge Probability Graph Models (EPGMs): Examples

_______________________________________________________________________

Gy Gs G Gy Gg

Gq G, G3
e pelc)

(1,2) p(1,2)=1/2 RGM,; 3/16 , 3/16 | 1/16 3/16 ' 1716 | 3716 | 116 | 1/16 |
(1,3) p(1,3) =1/4 RGM, 1/4 /8 | 0 1/4 | 1/8 /8 | o0 | 1/8 |
23  pa3=1/2 ReM;, 12 | o | o o | o 1/4 | o | 14 |

* RGM;: Edge independent (minimally dependent)
* RGM,: Between RGM; and RGM; (intermediately dependent)
* RGM3: Maximally dependent
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Edge Probability Graph Models (EPGMs): Example

_______________________________________________________________________

Gy Gs G Gy Gg

Gq G, G3
e pelc)

(1,2) p(2)=1/2 RGM; 3/16 3/16 , 1/16 | 3/16 | 1/16 | 3/16 | 1/16 | 1/16 |
(1,3) p(1,3)=1/4 RGM, 1/4 1/8 | 0o | /4 I 1/8 | 1/8 | 0 1/8 |
23)  p23)=1/2 RGM; 1/2 0 o 1 o |l o pual o | yaj

* RGM;: Edge independent (minimally dependent)
* RGM,: Between RGM; and RGM; (intermediately dependent)
* RGM3: Maximally dependent
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Edge Probability Graph Models (EPGMs): Example

_______________________________________________________________________

Gs Gg G7 Gg

G, G, Ga G,
"R | Pricy] | Prics) | Pric) ' Pric

(1,2) p(1,2)=1/2 RGM, 3/16 3/16  1/16 | 316 | 1/16 ' 3/16 | 1/16 | 1/16 |
(1,3) p(1,3) =1/4 RGM, 1/4 1/8 0 /4 | 1/8 | 1/8 0 1/8 |
23) p(23)=1/2 RGM; 1/2 0 0 0 | o | 14 0 1/4_ |

* RGM;: Edge independent (minimally dependent)
* RGM,: Between RGM; and RGM; (intermediately dependent)
* RGM3: Maximally dependent
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Edge Probability Graph Models (EPGMs): Basic Properties

* EPGMs are general: Any RGM can be
decomposed into its marginal edge
probabilities p and edge dependency -
can be represented as an EGPM w.r.t. p
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Edge Probability Graph Models (EPGMs): Basic Properties

* Recall: For edge independent graph models, If you want high triangle-
density, you must sacrifice variability

* EPGMs have constant overlap for given p: Given any edge
probabilities p, all EPGMs w.r.t. p have the same overlap
 Specifically, the same overlap as the edge independent graph model with
marginal edge probabilities p

* While keeping the same overlap (i.e., same variability), we can have
higher expected number of triangles!
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Edge Probability Graph Models (EPGMs): Basic Properties

_______________________________________________________________________

Gg

Gq G G3 Gy Gs Ge G7
oo |Pricy) |Prics) PriGa) iG] PriGel PriGe] PriG) Pl

(1,2) p(1,2)=1/2 RGM; 3/16 3/16 1/16 3/16 1/16  3/16  1/16  1/16
(1,3) p(1,3)=1/4 RGM, 1/4 1/8 0 1/4 1/8 1/8 0 1/8
23) p(23)=1/2 RGM; 1/2 0 0 0 0 1/4 0 1/4

* Expected number of triangles = Pr|Gg]

* All three RGMs share the same marginal edge probabilities p =2
they share the same overlap (variability) =2
but they have different Pr|Gg]| (number of triangles)
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Edge Probability Graph Models (EPGMs): Basic Properties

To summarize, EPGMs are...
* General: Any RGM can be represented as an EPGM

 Variable: The overlap is maintained as the same as the corresponding
edge independent graph model

* Potential to have high triangle-density: Even with the same marginal
edge probabilities, we are able to have higher triangle-density
compared to edge-independent models

* High triangle-density is a common pattern in real-world networks
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Recall: Random Graph Models (RMGs)

WHAT WE CALL RANDOM IS JUST PATTERNS WE CAN'T DECIPHER.
- Chuck Palahniuk (1962 —; American novelist)

e Random graph models (RGMs) are about
generating random graphs that reproduce A
patterns observed in real-world graphs oY

* Good RGMs should generate graphs that... i‘*,: I. |

(1) reproduce patterns commonly observed
in real-world networks,
(2) stay variable (i.e., not too similar), and = 7
(3) are feasible for computing and 7 h -
I \

controlling graph statistics REAL-WORL - Z
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EPGMs: Pros and Cons

PROS AND CONS

PRoS CONs | [N
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EPGMSs: Pros and Cons

Gt
PROS AND CONS /{\I-}_\ 9*«*{&
PROS CONJ ?_;

|
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EPGMs: Pros and Cons

PROS AND CONS

PROS CONS
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Research Questions

* Theory: How to find good subsets of EPGMs that are...
* Realistic: Reproduce common patterns in real-world graphs
* Flexible: Allow us to control the level of edge dependency
* Tractable: Allow us to compute graph statistics

* Practice: How to design efficient algorithms...
* For parameter fitting and graph generation

ﬂ%mq Proctice

/\
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Binding: Systematic Edge Dependency Imposition

* Group node pairs and decide them together

* Realistic: Reproduce common patterns in real-world graphs
» Specifically, higher clustering (e.g., triangle-density)

* Flexible: Allow us to control the level of edge dependency
e Specifically, by adjusting the extensiveness of binding

* Tractable: Allow us to compute graph statistics
 Specifically, we can compute the closed-form number of triangles

—)
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Binding: Example Revisited

________________________________________________________________________

Gg

Gl Gz GB G4 GS G6 G7
"Raw | PriG] | PriGs) | PriGa) | PriGy] | PriGs) | Prie] | PriGs) | PriG)

(1,2) p(1,2)=1/2 RGM; 3/16 3/16 1/16 3/16 1/16  3/16  1/16  1/16
(1,3) p(1,3)=1/4 RGM, 1/4 1/8 0 1/4 1/8 1/8 0 1/8
23) p(23)=1/2 RGM; 1/2 0 0 0 0 1/4 0 1/4

* RGM;: Edge independent (minimally dependent)
* RGM,: Between RGM; and RGM; (intermediately dependent)
* RGM3: Maximally dependent
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Binding: Example Revisited

@—@ @ﬂ@ @g@

________________________________________________________________________

Probability Pr[Gl] Pr
RGM,

NIR

®
@_________i
@ _____Ji

(12)  p2)=1/2 [RGM; 3/16 _3/16 _1/16 __3/16__ 116  3/16 116 _1/16 |
(1,3) p(1,3) =1/4 RGM, 1/4 1/8 0 1/4 1/8 1/8 0 1/8
(2,3) p(2,3)=1/2 RGM; 1/2 0 0 0 0 1/4 0 1/4

* RGM;: Each node pair alone forms a group itself
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Binding: Example Revisited

________________________________________________________________________

Gg

Gl Gz GB G4 GS G6 G7
"Raw | PriG] | PriGs) | PriGa) | PriGy] | PriGs) | Prie] | PriGs) | PriG)

(1,2) p(1,2)=1/2 RGM; 3/16 3/16 1/16 3/16 1/16  3/16  1/16  1/16

0 pa-us o i yp o s s w0 b |
23) p(23)=1/2 RGM; 12 0 0 0 0 1/4 0 1/4

* RGM,: (1,2) and (1,3) are grouped and decided together
e Sample a single random number s € [0,1] for both pairs
* Either (1,2) or (1,3) exists if p(i,j) = s

* (2,3) is decided independently
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Binding: Example Revisited

________________________________________________________________________

Gg

Gl Gz GB G4 GS G6 G7
"Raw | PriG] | PriGs) | PriGa) | PriGy] | PriGs) | Prie] | PriGs) | PriG)

(1,2) p(1,2)=1/2 RGM; 3/16 3/16 1/16 3/16 1/16  3/16  1/16  1/16

0 pa-us o i yp o s s w0 b |
23) p(23)=1/2 RGM; 12 0 0 0 0 1/4 0 1/4

* RGM,: Sample a single random number s € [0,1] for (1,2) and (1,3)
e Either (1,2) or (1,3) exists if p(i,j) = s

* (1) 0 < s <1/4:Both (1,2) and (1,3) exist (Gs or Gg)

*(2)1/4<s <1/2:0nly (1,2) exists (G, or Gg)

* (3)1/2 < s < 1: Neither exists (G1 or G,)
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Binding: Example Revisited

_______________________________________________________________________

Gg

Gl Gz GB G4 GS G6 G7
"Raw | PriG] | PriGs) | PriGa) | PriGy] | PriGs) | Prie] | PriGs) | PriG)

(1,2) p(1,2)=1/2 RGM; 3/16 3/16 1/16 3/16 1/16  3/16  1/16  1/16

(1,3) p(1,3) =1/4 RGM, 1/4 1/8 0 1/4 1/8 1/8 0 1/8
23 p@H=1/2 [RM; 12 0 0 o __ o_ s _o_ _1a |

* RGM3;: All three node pairs are grouped and decided together
* Sample a single random number s € [0,1] for the whole group
* Each edge (i,j) existsif p(i,j) = s
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Binding: Example Revisited

_______________________________________________________________________

Gg

Gl Gz GB G4 GS G6 G7
"Raw | PriG] | PriGs) | PriGa) | PriGy] | PriGs) | Prie] | PriGs) | PriG)

(1,2) p(1,2)=1/2 RGM; 3/16 3/16 1/16 3/16 1/16  3/16  1/16  1/16

(1,3) p(1,3) =1/4 RGM, 1/4 1/8 0 1/4 1/8 1/8 0 1/8
23 p@H=1/2 [RM; 12 0 0 o __ o_ s _o_ _1a |

* RGM3: Sample a single random number s € [0,1] for the whole group
* Each edge (i,j) exists if p(i,j) = s:

* (1) 0 < s < 1/4: All three edges exist (Gg)

* (2)1/4 < s <1/2:0nly (1,2) and (2,3) exist (Gg)

* (3)1/2 < s < 1: None exists (G4)
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Binding: Example Revisited

________________________________________________________________________

Gg

Gl Gz GB G4 GS G6 G7
"Raw | PriG] | PriGs) | PriGa) | PriGy] | PriGs) | Prie] | PriGs) | PriG)

(1,2) p(1,2)=1/2 RGM; 3/16 3/16 1/16 3/16 1/16  3/16  1/16  1/16

(1,3) p(1,3) =1/4 RGM, 1/4 1/8 0 1/4 1/8 1/8 0 1/8
23 p@H=1/2 [RM; 12 0 0 o __ o_ s _o_ _1a |

* RGM3: Sample a single random number s € [0,1] for the whole group
* Each edge (i,j) existsif p(i,j) = s

* For each (i, ), its marginal probabilities is maintained

* While edge dependency is imposed among nodes pairs in the same group
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Binding: Intuitions

* More node pairs are grouped together
- “Stronger” edge dependency
— Higher triangle-density (and general clustering)

* Maximal: All node pairs are grouped together
* Minimal: Each node pair alone forms a group (edge independent)

* Between the two extreme cases, we have various ways to group the
node pairs and thus impose edge dependency

Minimal The “spectrum” of binding Maximal
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Local Binding: Node-Oriented Grouping

* Q: How can we decide which node pairs to group together?

* Challenge: There are too many possible ways to group them, and
many of them are not meaningful (e.g., grouping irrelevant pairs)!

* We propose to use node-oriented grouping
* We first group nodes, and then bind the node pairs between them

B8 = 8 B
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Local Binding: Node-Oriented Grouping

* It is realistic: In real-world social networks, we have group
interactions, where multiple nodes (people) form a group and the
interaction between them depend on each other
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Local Binding: Iterative Framework

* Challenge: But there are still many ways to group nodes
* Consider RGMs that generate graphs on n nodes (v = 1,2, ..., n)

* Given: (1) Edge probabilities p: (g) — 10,1], (2) node-sampling
probabilities g: [n] — [0,1], (3) maximum number of rounds: R

* Initialize the set of remaining (i.e., not-yet-grouped) node pairs Promy

* Repeat foreachroundi =1,2,...,R:
* Sample each node v € [n] with probability g(v) = Grouped nodes V;
* Get the not-yet-grouped pairs among V; = Node pairs P; = (I;‘) N Peem
* Exclude those grouped pairs: Premy < Prem \ P;
* Bind those pairs together and generate edges > Generated edges E;

* Independent sampling for the remaining pairs after R rounds (if any)
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Local Binding: Example

* The edge probabilities p and the node-sampling probabilities g are in
the tables. We sample for R = 2 rounds for n = 5 nodes

———

(12)  p(12) =1/ @ nn @
SO SR o | Probabiity

(1,4) p(1,4) =1/3
(1,5) p(1,5) =1/4

g(1) = 1/2 . s Do
(2,3) p(2,3) = 3/4
(2,4) p(2,4) =1/4

g(2) =1/2 o ...

g(3) =1/2 @.‘I‘.......:f:
2,5  p(25) =2/3 gg; i Z; *, P .: R
(3,4)  p(34) =3/5 A * o*
(3,5  p(35)=1/2

(4,5) p(4,5) =1/5

U1 B W N
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Local Binding: Example (Round i = 1)

* Sampled nodes V; =7

———

(112) p(112)=1/2 @llllll@
E—
Probability

(14  p(14) =1/3 .
(1,5) p(1,5) = 1/4 | g(1)=1/2
23) p23)=3/4 |
24)  p24)=1/4 |

|

N "
x * 4 g
N g & n
N . & u
N u

; |

2 g(2) =1/2 | ::. ..;

3 g(3):1/2 I :l“lllllI.iz

4 4) = 3/5 . &
(2,5) p(2,5) =2/3 - 9 / | . % . ¢

— 2
(34)  p(34)=3/5 | gl =iy . o
(3,5) p(3,5) =1/2

(4,5) p(4,5) =1/5
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Local Binding: Example (Round i = 1)

* Sampled nodes V; =7

12)  p(12) =1/2 @

(1,3) p(1,3) =2/5 -

SPORRGINAR  Node | Probability = et

15  p(1,5) =1/4 L1 _sw=12 31X RS LS
2 g(2) = 1/2 . . o ®

(2,3) p(2,3) =3/4 ~ ‘¢

24)  p(24) =1/4 3 9(3) =1/2 @‘.‘."......:.:

(2,5) p(2,5) = 2/3 : g =3/5 ° % .: o

- L
G4 pGa) =3/5 9(3) =4/3 R
(3,5) p(3,5) =1/2

(4,5) p(4,5) =1/5
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Local Binding: Example (Round i = 1)

e Sampled nodes V; = {2,...7}

———

(12)  p(12) =1/ @ nn @
SO SR o | Probabiity

(1,4) p(1,4) =1/3 1 g(1) = 1/2 ;' “‘ K ~: l‘.l‘.

(1,5)  p(15)=1/4 == L
23)  p(23)=3/4 |2 _e@=12 v/ 2 e
’ ’ = L 2 . L
(2,4) p(2,4) = 1/4— g(3) - 1/2 @‘ll|lllll-.$.
2 4

(2,5) p(2,5) =2/3

- L
G4 pGa) =3/5 9(3) =4/3 R
(3,5) p(3,5) =1/2

(4,5) p(4,5) =1/5
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Local Binding: Example (Round i = 1)

* Sampled nodes V; = {2,3,...7}

12 p2)=1/2 @
1,3 1,3) =2/5
RO A oic | pronaniity [ O o

(1,4)  p(1,4) =1/3 - LU AR
15  p(,5) =1/4 g =1/2 Y RN

1
2 g(2)=1/2 S S

2,3 2,3) =3/4 = | m=——————— se on

Ez 43 Zﬁz 43 _ 1f4 |3 _9®=12 |/ @:ﬁ‘.. cennad :@

25)  p(25) =2/3 : J Eg ] i/ E el o

(3,4)  p(34) =3/5 9(>) =4/ * o*

(3,5) p(3,5) =1/2

(4,5) p(4,5) =1/5
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Local Binding: Example (Round i = 1)

* Sampled nodes V; = {2,3,4,...7 }

12 p2)=1/2 @
1,3 1,3) =2/5
RO A oic | pronaniity [ O o

1,4)  p(1,4) =1/3 I S .
(1,5)  p(1,5)=1/4 A= P .

1
Do 1o @‘” ”‘@
24)  p(24)=1/4 3 9B8=1z S CTOIT -t
(2,5) p(2,5) =2/3 | _4 ___a®=3/5 \/ . :
(34)  p(34) =3/5 > 9(3) =4/3
(35  p(35)=1/2

(4,5) p(4,5) =1/5
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Local Binding: Example (Round i = 1)

e Sampled nodes V; = {2,3,4,5}

———

(1,2)
(1,3)
(1,4)
(1,5)
(2,3)
(2,4)
(2,5)
(3,4)
(3,5)
(4,5)

p(1,2) =1/2 @llllll@
PO noie | Probabilly

1,4) = 1/3 . R
p( )_ / 1 g(1) =1/2 - o K s
p(1,5) =1/4 - S . . ’0 00 K .
p(2,3) = 3/4 g2)=1/ ::0 0.:
p(24‘)=1/4 3 g(3):1/2 :l“lllllI.i:
P(2’5) == 2/3 — i — _g(4i=1/5_ P “‘ : ‘0
p(3’4) = 3/5 | > ,g_(5)i4£ JV "0‘ \ ‘0‘
p(3,5) =1/2
p(4,5) =1/5
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Local Binding: Example (Round i = 1)

* Sampled nodes V; = {2,3,4,5} = Grouped pairs P; =
{{2,3},{2,4},12,5},13,4}, 13,5}, {4,5}}

Probability

(1,2) p(1,2)=1/2 @IIIIII@
(1,3)  p(,3)=2/5 Probability

(1,4  p(14)=1/3
(1,5)

p(1,5) = 1/4 g(1)=1/2 :- “ x E
-_
3 g®=12
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Local Binding: Example (Round i = 1)

* Sampled nodes V; = {2,3,4,5} = Grouped pairs P; =
{{2)3}) {2)4}) {2)5}) {3)4}) {3)5}) {415}} 9 Sampled S = 047

———

(12)  p(12) =1/ @ nn @
SO SR o | Probabiity

(1,4) p(1,4) =1/3
(1,5) p(1,5) =1/4

g(1) = 1/2 Do w0
(2,3) p(2,3) =3/4
(2,4) p(2,4) =1/4

9(2)=1/2 e’ ®on

5 =17 @::‘......&::@
(25)  p(25)=2/3 9(4) =3/5 AN

g(5) =4/5 . R
B4  pB4)=3/5 . .
35  p(35)=1/2

(4,5) p(4,5) =1/5

Ul B W N -
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Local Binding: Example (Round i = 1)

* Sampled nodes V; = {2,3,4,5} = Grouped pairs P; =
{{2)3}) {2)4}) {2)5}) {3)4}) {3)5}) {415}} 9 Sampled S = 047
—> Generated edges E; =7

———

(12)  p(12) =1/ @ nn @
SO SR o | Probabiity

(1,4) p(1,4) =1/3
(1,5) p(1,5) =1/4

g(1) = 1/2 . s Do
(2,3) p(2,3) = 3/4
(2,4) p(2,4) =1/4

9(2)=1/2 e’ ®on

5 =17 @::‘......&::@
(25)  p(25)=2/3 9(4) =3/5 AN

g(5) =4/5 . R
B4  pB4)=3/5 . .
35  p(35)=1/2

(4,5) p(4,5) =1/5

Ul B W N -
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Local Binding: Example (Round i = 1)

* Sampled nodes V; = {2,3,4,5} = Grouped pairs P; =
{{2)3}) {2)4}) {2)5}) {3)4}) {3)5}) {415}} 9 Sampled S = 047
—> Generated edges E; = {{2,3},{2,5},{3,4}, {3,5}}

———

(12)  p(12) =1/ @ nn '@
SO SR o | Probabiity

1,4 1,4) = 1/3 .
(1,4) p(1,4) =1/ 9(1) = 1/2 :

(1,5)  p(1,5) = 1/4 “ .
_ g(2) =1/2 . .
T 93 =1/2 @ : @
g(4) =3/5 “‘
X

-_é
(25)  p(25)=2/3 g
B4 pB4AH=3/5 g(5) = 4/5
35  pB5)=1/2
G5 pem =15 X

Ul B W N -
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Local Binding: Example (Round i = 1)

* Sampled nodes V; = {2,3,4,5} = Grouped pairs P; =
{{2)3}) {2)4}) {2)5}) {3)4}) {3)5}) {415}} 9 Sampled S = 047
—> Generated edges E; = {{2,3},{2,5},{3,4},{3,5}} = Round 1 over!

———

(12)  p(12) =1/ @ nn '@
SO SR o | Probabiity

1,4 1,4) =1/3 N
14 p4) =1/ D) = 1/ :

(1,5) p(1,5) = 1/4 . ..
_ g(2) =1/2 . .
g(4) =3/5 “‘
X

(2,5) p(2,5) =2/3

Ul B W N -

(34) p(B4) =3/5 g(5) =4/5
35  p(35)=1/2
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Local Binding: Example (Round i = 2)

* Sampled nodes V; = {1,2,3,4}

———

(1,2) p(1,2) =1/2

gii PSSO nose | probabily

p(1,4) =1/3

(1,5) p(1,5) = 1/4 1 g(1)=1/2
23)  p(23) =3/4 2 g(2) =1/2
B e A
_ 4 g(4) =3/5

(25) p@5)=12/3 - o) are

3,4)  p(3,4) =3/5
(3,5  p(35) =1/2
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Local Binding: Example (Round i = 2)

* Sampled nodes V; = {1,2,3,4} = Grouped pairs P; =
{{1,2},{1,3},{1,4},{1,5}}

———

(1,2) p(1,2) =1/2

1;3 1,3 =2/5
=t b B Node | Probabilty

(1,4) p(1,4) =1/3

15)  p(A5) =1/4 ; g(1) =1/2
23)  p(23) =3/4 2 g(2) =1/2
B e A
_ 4 g(4) =3/5

(25) p@5)=12/3 - o) are

(3,4) p(3,4) =3/5
(3,5) p(3,5) =1/2
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Local Binding: Example (Round i = 2)

* Sampled nodes V; = {1,2,3,4} = Grouped pairs P; =
{1,2},{1,3},{1,4},{1,5}} = Sampled s = 0.39

———

(1,2) p(1,2) =1/2

1;3 1,3 =2/5
=t b B Node | Probabilty

(1,4) p(1,4) =1/3

15)  p(A5) =1/4 ; g(1) =1/2
23)  p(23) =3/4 2 g(2) =1/2
B e A
_ 4 g(4) =3/5
—— . g(5) = 4/5

(3,4) p(3,4) =3/5
(3,5) p(3,5) =1/2
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Local Binding: Example (Round i = 2)

* Sampled nodes V; = {1,2,3,4} = Grouped pairs P; =
{1,2},{1,3},{1,4},{1,5}} = Sampled s = 0.39
—> Generated edges E; = {{1,2}, {1,3}}

——

12)  p(L2)=12 /

(1L3)  p3)=2/5 ”
Probablllty
S as pam=13 X

1 9(1) =1/2

?F—BM x 2 9(2) =1/2
, pis,3) = 3 g3)=1/2
-__ 4 g4) =3/5
(25)  p25)=2/3 5 g(5) = 4/5

3,4)  p(3,4) =3/5
(3,5  p(35) =1/2
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Local Binding: Example (Round i = 2)

* Sampled nodes V; = {1,2,3,4} = Grouped pairs P; =
{1,2},{1,3},{1,4},{1,5}} = Sampled s = 0.39
—> Generated edges E; = {{1,2}, {1,3}} = Round 2 over!

(1,2) p(1,2) =1/2

1,3 1,3) =2/5
an sanee TN

as  pas=1/4 -
2 g)=1/2

2,3 2,3) =3/4
(23)  p@23)=3/ ; 3) = 12
-__ 4 g4) =3/5

3,4)  p(3,4) =3/5
(3,5  p(35) =1/2
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Local Binding: Example (Termination)

* All node pairs have been determined (i.e., remaining pairs P.o;, = 0)

- The whole generation process is terminated =2
Final edge set £ = El U EZ — {{1)2}1 {1;3}1 {213}1 {215}; {3)4}; {3'5}}

(1,2) p(1,2) =1/2

1,3 1,3) =2/5
an supers  ECTEECTIT

Cas pam =14 —
= 2 g(2) =1/2

(2,3) p(2,3) = 3/4 > g(3) _1/2
-__ 4 g(4) =3/5
(2,5) p(2,5) =2/3 E g(S) _ 45

(3,4) p(3,4) =3/5
(3,5) p(3,5) =1/2
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Closed-Form Triangle Count Computation

* Theorem: With local binding, we are able to compute the closed-form
expected number of triangles in a generated graph

* Linearity of expectation = Only need to compute the probability of
each triangle being generated = Sum up the probabilities

* Fact: The probability of forming a triangle only depends on how the
three node pairs are grouped
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Example Revisited

________________________________________________________________________

Gg

Gq G G3 Gy Gs Ge G7
oo |Pricy) |Prics) PriGa) iG] PriGel PriGe] PriG) Pl

(1,2) p(1,2)=1/2 RGM; 3/16 3/16 1/16 3/16 1/16  3/16  1/16  1/16
(1,3) p(1,3)=1/4 RGM, 1/4 1/8 0 1/4 1/8 1/8 0 1/8
23) p(23)=1/2 RGM; 1/2 0 0 0 0 1/4 0 1/4

* Fact: The probability of forming a triangle only depends on how the three
node pairs are grouped, e.g.,
» RGM;: All separated (three groups {{1,2}} / {{1,3}} / {{2,3}}) > Pr[A] = 1/16
* RGM,: Partially grouped (two groups {{1,2}, {1,3}} / {{2,3}}) - Pr[A] =1/8
* RGM3: All grouped (a single group {{1,2}, {1,3}, {2,3}}) 2> Pr[A]l =1/4
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Closed-Form Triangle Count Computation

* Theorem: With local binding, we are able to compute the closed-form
expected number of triangles in a generated graph

* Fact: The probability of forming a triangle only depends on how the
three node pairs are grouped

* = Only need to compute the probability of each possible grouping
» - After getting the probability of each possible grouping

* PF[A] — Zpossible grouping P PI‘[P] PI‘[A|1P]
 Sum of Pr[getting that grouping] - Pr[triangle under that grouping]
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Parallel Binding: Easily Parallelizable Variant

* It is non-trivial to parallelized
local binding, due to the ‘
temporal dependency in the
generation process

* Specifically, in a round, whether Local binding
an edge is generated depends on
whether it is grouped in a

previous round ‘ ‘
* We propose parallel binding, ‘ O U
an easily-parallelizable version . .
of binding o IR

Parallel binding
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Parallel Binding: Key Idea

* Key idea: Make the rounds
temporally independent, so ‘
that multiple rounds can be
processed in a parallel manner

* In every round, each pair (i, ) Local binding
is possible to be grouped, and
the corresponding edge is ‘ ‘
possible to be generated
* So that, the marginal edge ‘ . .
probability p(i, j) is satisfied 50 2

accumulated over the rounds Parallel binding
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Parallel Binding v.s. Local Binding

* Both parallel binding and local binding (1) preserve marginal edge
probabilities and (2) impose edge dependency, but they are
mathematically distinct and result in different random graph models

* Between the two variants, neither is always superior over the other,
but we recommend parallel binding if efficiency is a major concern
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Parameter Fitting

* Parameters: Edge probabilities p, node-sampling probabilities g, and
the number of rounds R

* We assume edge probabilities p are given or obtained from some
edge-probability model (e.g., Erd6s-Rényi or Chung-Lu)

 We manually set the number of rounds R
* Variables: We only fit the node-sampling probabilities g

* Objective: The expected number of triangles, for which we have
derived theoretical results

Bu, Yang, Bogdan, and Shin [ICDM’25] Edge Probability Graph Models Beyond Edge Independency



Parameter Fitting: Intuition

* Q: Why do we use the number of triangles as the objective?

* Recall the question we had in the beginning: Can we go beyond edge
independency, breaking through the limitations, but still keeping the
merits of the edge independent graph models?

* Merits (what edge-independent models can already do well): Heavy-
tailed degree distribution and small diameter

* Limitations (what edge-independent models cannot do well): High
clustering (e.g., higher triangle-density)

e = So we obtain the edge probabilities from those models to maintain
their merits, while focusing on improving w.r.t. clustering

Bu, Yang, Bogdan, and Shin [ICDM’25] Edge Probability Graph Models Beyond Edge Independency



Experimental Settings

* Datasets: Real-world graphs from different domains
e Social networks: Hamster and Facebook
* Web graphs: Pol-blogs and Spam
 Biological graphs: CE-PG and SC-HT

* Clustering metrics: Number of triangles (A), global clustering
coefficient (GCC), and average local clustering coefficient (ALCC)

dataset 4 |E| A GCC ALCC
Hamster 2,000 16,097 157,953  0.229 0.540 :
Facebook 4,039 88,234 4,836,030 0.519 0.606
Pol-blogs 1,222 16,717 303,129  0.226 0.320
Spam 4,767 37,375 387,051  0.145 0.286
CE-PG 1,692 47,309 2,353,812  0.321 0.447
SC-HT 2,077 63,023 4,192,980 0.377 0.350
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Fitting and Graph Generation Processes

* Edge-probability models: Erd6s-Rényi model, Chung-Lu model,
stochastic block model, and stochastic Kronecker model

* Edge-dependency mechanisms: Edge independent, local binding, and
parallel binding

* Fitting 1: Given an input graph, for each edge-probability model, we
fit the parameters of the model = marginal edge probabilities p

* Fitting 2: Given p obtained above, we optimize node-sampling
probabilities g so that the expected number of triangles in a
generated graph matches the ground truth in the input graph

* Graph generation: We generate random graphs with binding using p
and g, and we also generate graphs using the edge independent
graph model with p only (i.e., g(v) = 0 for each node v)
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Results: Binding Maintains Realistic Degrees and Distances

* Observation: With binding, degree and distance distributions are
largely maintained as in the edge-independent models > We
“inherit” the merits of edge-independent models

B Ground Truth I B Edge Independent B M Local Binding B B Parallel Binding

10!
100

103
102
10!
100

Dataset: Hamster Dataset: Facebook Dataset: Hamster Dataset: Facebook
103 100 100
v , . 2 _1 _1 A Y
Erdés-Rényi N }81 © 107 107 b\ Y
N 100 0 107 =———— ‘\ - 107 == e = “-\' -
® = 1 2 4| 8 1 2 4 8
g 8 \
2 103 2
Chung-Lu 5 107 =
s 10! =
E 100 E
g £
=
g 102 a
. w 102 8
Stochastic Block ) z
= 5
: 2
g 5
2 &
E 2
prex Q
S

Stochastic Kronecker

8
100 100
107 mmm e e e -] 107 e -%-

distance d
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Results: Binding Improves Clustering

* Observation: With binding, the number of triangles (A; our fitting
objective) is well fit, and both global clustering coefficient (GCC) and
average local clustering coefficient (ALCC) are closer to the ground-
truth values 2 We break the limitations of edge-independent models

dataset Hamster Facebook Pol-blogs Spam CE-PG SC-HT Average Rank

metric A GCC ALCC| A GCC ALCC| A GCC ALCC| A GCC ALCC| A GCC ALCC| A GCC ALCC A GCC ALCC

model Ground Truth 1.00 023 054 | 1.00 052 0.61 |1.00 023 032 |1.00 0.14 029 [1.00 032 045 |1.00 038 035 |[N/A N/A N/A
Edge Independent || 0.01 0.01 0.01 {0.01 0.01 0.01 [0.03 002 0.02 [0.01 0.00 0.00 [0.04 003 0.03 [0.03 0.03 0.03 30 27 2.5
Erd6s-Rényi Local Binding 1.00 032 024 | 1.01 045 0.22 (095 034 0.25 [099 034 0.23 |1.02 040 026 |1.01 042 025 || 1.7 13 1.3

Parallel Binding || 0.99 0.39 0.64 |1.00 057 0381 |1.02 041 0.66 [0.99 040 066 [097 051 075 {099 0.56 0.79 1.3 20 2.2

Edge Independent || 030 0.07 0.06 |0.12 006 0.06 |0.79 0.18 0.17 |0.50 007 006 |0.68 023 022 |064 024 023 |[30 30 25
Chung-Lu Local Binding |[0.99 0.17 026 |1.03 026 030 [1.00 021 034 [1.03 0.2 026 |1.00 029 043 [1.04 032 047 || 17 18 15
Parallel Binding || 1.00 0.18 0.47 |1.01 034 063 |[1.01 022 047 |1.01 0.13 044 |1.00 031 058 |1.14 029 061 |[13 12 20

Edge Independent | 026 0.08 0.04 [0.15 0.14 0.08 [048 0.14 0.16 [0.53 009 004 |0.66 026 020 |064 027 0.3 [[30 30 30
Stochastic block | Local Binding || 1.04 0.22 024 093 043 033 [0.99 024 035 (098 015 022 [099 032 041 [1.03 035 039 || 1.7 12 13
Parallel Binding || 0.99 024 0.52 |1.03 053 056 [1.01 0.18 025 (099 0.6 036 |1.05 033 036 [097 034 044 |13 18 17

Edge Independent || 0.18 0.04 0.06 [0.05 0.04 0.04 |0.10 004 0.07 |0.06 0.01 003 |0.13 007 0.12 [0.03 003 0.05 3.0 3.0 3.0

Stochastic Kronecker | Local Binding || .09 0.15  0.23 |0.93 024 027 [1.06 0.14 023 [094 0.2 0.19 (099 0.17 031 |[1.44 018 028 |[20 20 1.7
Parallel Binding || 1.00 0.17 0.39 (097 035 0.60 [0.94 022 042 |1.05 0.16 038 [1.00 028 046 [1.07 035 058 || 1.0 1.0 1.3

Edge Independent || 3.0 30 30 [30 30 30 |30 30 25 [30 25 28 [30 30 30 [30 30 23 |30 29 28

Average Local Binding || 18 15 20 [20 20 20 |15 15 10 |20 1.8 13 |15 15 13 |18 13 13 (|18 16 15

Rank Parallel Binding || 1.3 15 1.0 [10 10 10 |15 15 25 |10 18 20 [15 15 18 |13 18 25 |[13 15 18
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Results: Binding Improves Other Graph Metrics

* Observation: With binding, the overall values of various graph
metrics get closer to the ground-truth values 2 We improve upon
edge-independent models in various aspects

* Averaged over the datasets
* The relative error of “edge independent” is normalized as reference (1.0)

B Edge Independent B Local Binding I Parallel Binding

1.0

0.5

normalized
rel. error

0.0 Conductance Max Coreness

graph metric

Modularity Node Betweness Natural Connectivity

Bu, Yang, Bogdan, and Shin [ICDM’25] Edge Probability Graph Models Beyond Edge Independency



Conclusion

In this work, we...

* Proposed new concepts: Edge probability graph models (EPGMs) that
keep marginal edge probabilities but go beyond edge dependency

* Proposed binding framework: A realistic and practical way to impose
edge dependency by grouping nodes

* Derived theoretical results: Closed-form formula for the number of
triangles in graphs generated using the binding framework

* Developed efficient algorithms: Fast parameter fitting by considering
node equivalence in existing edge probability models

0 Appendix, Code, and Datasets: bit.ly/EPGM _ICDM25
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