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Random Graph Models (RMGs)
What we call random is just patterns we can't decipher.

- Chuck Palahniuk (1962 – ; American novelist)
• Random graph models (RGMs) are about 

generating random graphs that reproduce 
patterns observed in real-world graphs

• Good RGMs should generate graphs that…
(1) reproduce patterns commonly observed 

in real-world networks,
(2) stay variable (i.e., not too similar), and
(3) are feasible for computing and

controlling graph statistics
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Real-World Application of RGMs

• Generate synthetic but similar-to-real-world graphs
• Can be used as substitutes, especially when real-world data are 

scarce or unavailable due to some practical concerns (e.g., privacy)

3



[ICDM’25] Edge Probability Graph Models Beyond Edge IndependencyBu, Yang, Bogdan, and Shin

Real-World Application of RGMs

• Graph algorithm testing: If the algorithm works well on random 
graphs, we expect it to work well on real-world graphs too

• Statistical testing: We examine the statistical significance of some 
observations by comparing real-world graphs with random ones

• Graph anonymization: Release random graphs instead of the original 
data that might be sensitive, private, etc. 
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Examples of RGMs
• Erdős-Rényi model: Given overall density

• Reproducible patterns: Not really. Mainly used for mathematical purposes
• Chung-Lu model: Given degree sequences

• Reproducible patterns: Heavy‐tailed degrees, small-world phenomenon…
• Stochastic block model: Given node partitions and densities 

between/within partitions
• Reproducible patterns: Community structure, core-periphery, assortativity…

• Kronecker model: Use Kronecker power as edge probabilities
• Reproducible patterns: Fractal structure, heavy-tailed degrees,

small-world phenomenon…
• Common point: Edge existences are independent to each other!
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Edge Independent Graph Models: Merits

• Edge independent graph models: All random graph models that 
assume independent edge existences

• Simplicity: Mathematically concise and elegant
• Tractability: Easy to analyze and compute graph statistics
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Edge Independent Graph Models: Limitation

• Overlap: The similarity between generated random graphs
• High overlap = Low variability

• Theorem: For edge independent graph models, the expected number 
of triangles is bounded by an increasing function on overlap

• Implication: If you want high triangle-density, you must sacrifice variability

• High triangle-density is a common pattern in real-world networks
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Our Idea: Go Beyond Edge Independency
Adopt what is useful and discard what is useless.

- Qichao Liang (1873 – 1929; Chinese journalist)
• Q: Can we go beyond edge independency,

breaking through the limitations, but still 
keeping the merits of the edge 
independent graph models?
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Novel Perspective: RGMs as Decomposition of Distribution

• Random graph model (RGM)
• = distribution of graphs
• = multivariate distribution on edges
• = marginal probability of each edge + 

(in)dependency between edges
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Novel Perspective: RGMs as Decomposition of Distribution

• Random graph model (RGM)
• = distribution of graphs
• = multivariate distribution on edges
• = marginal probability of each edge + 

(in)dependency between edges
• Eureka! We can keep the marginal 

probabilities but introduce 
dependency between them!
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Edge Probability Graph Models (EPGMs): Definition

• Consider RGMs that generate graphs on 𝑛𝑛 nodes (𝑣𝑣 = 1,2, … ,𝑛𝑛)
• Given marginal edge probabilities 𝑝𝑝: 𝑛𝑛

2 → 0,1 , the set of EPGMs
w.r.t. 𝑝𝑝 consists of all the RGMs that satisfy the edge probabilities 𝑝𝑝

• Such EPGMs share the same marginal edge probabilities 𝑝𝑝, but vary in 
how the edge existences depend on each other
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Edge Probability Graph Models (EPGMs): Examples
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Node pair Probability

(1,2) 𝑝𝑝 1,2 = 1/2
(1,3) 𝑝𝑝 1,3 = 1/4
(2,3) 𝑝𝑝 2,3 = 1/2
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RGM 𝐏𝐏𝐏𝐏[𝑮𝑮𝟏𝟏] 𝐏𝐏𝐏𝐏[𝑮𝑮𝟐𝟐] 𝐏𝐏𝐏𝐏[𝑮𝑮𝟑𝟑] 𝐏𝐏𝐏𝐏[𝑮𝑮𝟒𝟒] 𝐏𝐏𝐏𝐏[𝑮𝑮𝟓𝟓] 𝐏𝐏𝐏𝐏[𝑮𝑮𝟔𝟔] 𝐏𝐏𝐏𝐏[𝑮𝑮𝟕𝟕] 𝐏𝐏𝐏𝐏[𝑮𝑮𝟖𝟖]
RGM1 3/16 3/16 1/16 3/16 1/16 3/16 1/16 1/16

RGM2 1/4 1/8 0 1/4 1/8 1/8 0 1/8

RGM3 1/2 0 0 0 0 1/4 0 1/4

• RGM1: Edge independent (minimally dependent)
• RGM2: Between RGM1 and RGM3 (intermediately dependent)
• RGM3: Maximally dependent
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Edge Probability Graph Models (EPGMs): Basic Properties

• EPGMs are general: Any RGM can be 
decomposed into its marginal edge 
probabilities 𝑝𝑝 and edge dependency 
can be represented as an EGPM w.r.t. 𝑝𝑝
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Edge Probability Graph Models (EPGMs): Basic Properties

• Recall: For edge independent graph models, If you want high triangle-
density, you must sacrifice variability

• EPGMs have constant overlap for given 𝒑𝒑: Given any edge 
probabilities 𝑝𝑝, all EPGMs w.r.t. 𝑝𝑝 have the same overlap

• Specifically, the same overlap as the edge independent graph model with 
marginal edge probabilities 𝑝𝑝

• While keeping the same overlap (i.e., same variability), we can have 
higher expected number of triangles!
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Edge Probability Graph Models (EPGMs): Basic Properties
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RGM2 1/4 1/8 0 1/4 1/8 1/8 0 1/8
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• Expected number of triangles = Pr[𝐺𝐺8]
• All three RGMs share the same marginal edge probabilities 𝑝𝑝

they share the same overlap (variability) 
but they have different Pr[𝐺𝐺8] (number of triangles)
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Edge Probability Graph Models (EPGMs): Basic Properties

To summarize, EPGMs are…
• General: Any RGM can be represented as an EPGM
• Variable: The overlap is maintained as the same as the corresponding 

edge independent graph model
• Potential to have high triangle-density: Even with the same marginal 

edge probabilities, we are able to have higher triangle-density 
compared to edge-independent models

• High triangle-density is a common pattern in real-world networks
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Recall: Random Graph Models (RMGs)
What we call random is just patterns we can't decipher.

- Chuck Palahniuk (1962 – ; American novelist)
• Random graph models (RGMs) are about 

generating random graphs that reproduce 
patterns observed in real-world graphs

• Good RGMs should generate graphs that…
(1) reproduce patterns commonly observed 

in real-world networks,
(2) stay variable (i.e., not too similar), and
(3) are feasible for computing and

controlling graph statistics
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EPGMs: Pros and Cons
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Research Questions

• Theory: How to find good subsets of EPGMs that are…
• Realistic: Reproduce common patterns in real-world graphs
• Flexible: Allow us to control the level of edge dependency 
• Tractable: Allow us to compute graph statistics

• Practice: How to design efficient algorithms…
• For parameter fitting and graph generation

28
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Binding: Systematic Edge Dependency Imposition

• Group node pairs and decide them together
• Realistic: Reproduce common patterns in real-world graphs

• Specifically, higher clustering (e.g., triangle-density)

• Flexible: Allow us to control the level of edge dependency 
• Specifically, by adjusting the extensiveness of binding

• Tractable: Allow us to compute graph statistics
• Specifically, we can compute the closed-form number of triangles
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Binding: Example Revisited
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Node pair Probability
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RGM1 3/16 3/16 1/16 3/16 1/16 3/16 1/16 1/16

RGM2 1/4 1/8 0 1/4 1/8 1/8 0 1/8

RGM3 1/2 0 0 0 0 1/4 0 1/4

• RGM1: Edge independent (minimally dependent)
• RGM2: Between RGM1 and RGM3 (intermediately dependent)
• RGM3: Maximally dependent
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Binding: Example Revisited
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Node pair Probability
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RGM1 3/16 3/16 1/16 3/16 1/16 3/16 1/16 1/16

RGM2 1/4 1/8 0 1/4 1/8 1/8 0 1/8

RGM3 1/2 0 0 0 0 1/4 0 1/4

• RGM1: Each node pair alone forms a group itself
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Binding: Example Revisited

32

Node pair Probability

(1,2) 𝑝𝑝 1,2 = 1/2
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RGM3 1/2 0 0 0 0 1/4 0 1/4

• RGM2: (1,2) and (1,3) are grouped and decided together
• Sample a single random number 𝑠𝑠 ∈ 0,1 for both pairs
• Either (1,2) or (1,3) exists if 𝑝𝑝 𝑖𝑖, 𝑗𝑗 ≥ 𝑠𝑠

• (2,3) is decided independently
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Binding: Example Revisited
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Node pair Probability

(1,2) 𝑝𝑝 1,2 = 1/2
(1,3) 𝑝𝑝 1,3 = 1/4
(2,3) 𝑝𝑝 2,3 = 1/2

1

32

1

32

1

32

1

32

1

32

1

32

1

32

1

32
𝐺𝐺1 𝐺𝐺2 𝐺𝐺3 𝐺𝐺4 𝐺𝐺5 𝐺𝐺6 𝐺𝐺7 𝐺𝐺8

RGM 𝐏𝐏𝐏𝐏[𝑮𝑮𝟏𝟏] 𝐏𝐏𝐏𝐏[𝑮𝑮𝟐𝟐] 𝐏𝐏𝐏𝐏[𝑮𝑮𝟑𝟑] 𝐏𝐏𝐏𝐏[𝑮𝑮𝟒𝟒] 𝐏𝐏𝐏𝐏[𝑮𝑮𝟓𝟓] 𝐏𝐏𝐏𝐏[𝑮𝑮𝟔𝟔] 𝐏𝐏𝐏𝐏[𝑮𝑮𝟕𝟕] 𝐏𝐏𝐏𝐏[𝑮𝑮𝟖𝟖]
RGM1 3/16 3/16 1/16 3/16 1/16 3/16 1/16 1/16

RGM2 1/4 1/8 0 1/4 1/8 1/8 0 1/8

RGM3 1/2 0 0 0 0 1/4 0 1/4

• RGM2: Sample a single random number 𝑠𝑠 ∈ 0,1 for (1,2) and (1,3)
• Either (1,2) or (1,3) exists if 𝑝𝑝 𝑖𝑖, 𝑗𝑗 ≥ 𝑠𝑠

• (1) 0 ≤ 𝑠𝑠 ≤ 1/4: Both (1,2) and (1,3) exist (𝐺𝐺5 or 𝐺𝐺8)
• (2) 1/4 < 𝑠𝑠 ≤ 1/2: Only (1,2) exists (𝐺𝐺2 or 𝐺𝐺6)
• (3) 1/2 < 𝑠𝑠 ≤ 1: Neither exists (𝐺𝐺1 or 𝐺𝐺4)
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Binding: Example Revisited
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Node pair Probability

(1,2) 𝑝𝑝 1,2 = 1/2
(1,3) 𝑝𝑝 1,3 = 1/4
(2,3) 𝑝𝑝 2,3 = 1/2

1

32

1

32

1

32

1

32

1

32

1

32

1

32

1

32
𝐺𝐺1 𝐺𝐺2 𝐺𝐺3 𝐺𝐺4 𝐺𝐺5 𝐺𝐺6 𝐺𝐺7 𝐺𝐺8

RGM 𝐏𝐏𝐏𝐏[𝑮𝑮𝟏𝟏] 𝐏𝐏𝐏𝐏[𝑮𝑮𝟐𝟐] 𝐏𝐏𝐏𝐏[𝑮𝑮𝟑𝟑] 𝐏𝐏𝐏𝐏[𝑮𝑮𝟒𝟒] 𝐏𝐏𝐏𝐏[𝑮𝑮𝟓𝟓] 𝐏𝐏𝐏𝐏[𝑮𝑮𝟔𝟔] 𝐏𝐏𝐏𝐏[𝑮𝑮𝟕𝟕] 𝐏𝐏𝐏𝐏[𝑮𝑮𝟖𝟖]
RGM1 3/16 3/16 1/16 3/16 1/16 3/16 1/16 1/16

RGM2 1/4 1/8 0 1/4 1/8 1/8 0 1/8

RGM3 1/2 0 0 0 0 1/4 0 1/4

• RGM3: All three node pairs are grouped and decided together
• Sample a single random number 𝑠𝑠 ∈ 0,1 for the whole group
• Each edge (𝑖𝑖, 𝑗𝑗) exists if 𝑝𝑝 𝑖𝑖, 𝑗𝑗 ≥ 𝑠𝑠
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Binding: Example Revisited
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Node pair Probability

(1,2) 𝑝𝑝 1,2 = 1/2
(1,3) 𝑝𝑝 1,3 = 1/4
(2,3) 𝑝𝑝 2,3 = 1/2

1

32

1

32

1

32

1

32

1

32

1

32

1

32

1

32
𝐺𝐺1 𝐺𝐺2 𝐺𝐺3 𝐺𝐺4 𝐺𝐺5 𝐺𝐺6 𝐺𝐺7 𝐺𝐺8

RGM 𝐏𝐏𝐏𝐏[𝑮𝑮𝟏𝟏] 𝐏𝐏𝐏𝐏[𝑮𝑮𝟐𝟐] 𝐏𝐏𝐏𝐏[𝑮𝑮𝟑𝟑] 𝐏𝐏𝐏𝐏[𝑮𝑮𝟒𝟒] 𝐏𝐏𝐏𝐏[𝑮𝑮𝟓𝟓] 𝐏𝐏𝐏𝐏[𝑮𝑮𝟔𝟔] 𝐏𝐏𝐏𝐏[𝑮𝑮𝟕𝟕] 𝐏𝐏𝐏𝐏[𝑮𝑮𝟖𝟖]
RGM1 3/16 3/16 1/16 3/16 1/16 3/16 1/16 1/16

RGM2 1/4 1/8 0 1/4 1/8 1/8 0 1/8

RGM3 1/2 0 0 0 0 1/4 0 1/4

• RGM3: Sample a single random number 𝑠𝑠 ∈ 0,1 for the whole group
• Each edge (𝑖𝑖, 𝑗𝑗) exists if 𝑝𝑝 𝑖𝑖, 𝑗𝑗 ≥ 𝑠𝑠:

• (1) 0 ≤ 𝑠𝑠 ≤ 1/4: All three edges exist (𝐺𝐺8)
• (2) 1/4 < 𝑠𝑠 ≤ 1/2: Only (1,2) and (2,3) exist 𝐺𝐺6
• (3) 1/2 < 𝑠𝑠 ≤ 1: None exists (𝐺𝐺1)
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Binding: Example Revisited
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Node pair Probability

(1,2) 𝑝𝑝 1,2 = 1/2
(1,3) 𝑝𝑝 1,3 = 1/4
(2,3) 𝑝𝑝 2,3 = 1/2

1

32

1

32

1

32

1

32

1

32

1

32

1

32

1

32
𝐺𝐺1 𝐺𝐺2 𝐺𝐺3 𝐺𝐺4 𝐺𝐺5 𝐺𝐺6 𝐺𝐺7 𝐺𝐺8

RGM 𝐏𝐏𝐏𝐏[𝑮𝑮𝟏𝟏] 𝐏𝐏𝐏𝐏[𝑮𝑮𝟐𝟐] 𝐏𝐏𝐏𝐏[𝑮𝑮𝟑𝟑] 𝐏𝐏𝐏𝐏[𝑮𝑮𝟒𝟒] 𝐏𝐏𝐏𝐏[𝑮𝑮𝟓𝟓] 𝐏𝐏𝐏𝐏[𝑮𝑮𝟔𝟔] 𝐏𝐏𝐏𝐏[𝑮𝑮𝟕𝟕] 𝐏𝐏𝐏𝐏[𝑮𝑮𝟖𝟖]
RGM1 3/16 3/16 1/16 3/16 1/16 3/16 1/16 1/16

RGM2 1/4 1/8 0 1/4 1/8 1/8 0 1/8

RGM3 1/2 0 0 0 0 1/4 0 1/4

• RGM3: Sample a single random number 𝑠𝑠 ∈ 0,1 for the whole group
• Each edge (𝑖𝑖, 𝑗𝑗) exists if 𝑝𝑝 𝑖𝑖, 𝑗𝑗 ≥ 𝑠𝑠

• For each (𝑖𝑖, 𝑗𝑗), its marginal probabilities is maintained
• While edge dependency is imposed among nodes pairs in the same group
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Binding: Intuitions

• More node pairs are grouped together 
 “Stronger” edge dependency
 Higher triangle-density (and general clustering)

• Maximal: All node pairs are grouped together
• Minimal: Each node pair alone forms a group (edge independent)
• Between the two extreme cases, we have various ways to group the 

node pairs and thus impose edge dependency

37

Minimal MaximalThe “spectrum” of binding
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Local Binding: Node-Oriented Grouping

• Q: How can we decide which node pairs to group together?
• Challenge: There are too many possible ways to group them, and 

many of them are not meaningful (e.g., grouping irrelevant pairs)!
• We propose to use node-oriented grouping
• We first group nodes, and then bind the node pairs between them

38
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Local Binding: Node-Oriented Grouping

• It is realistic: In real-world social networks, we have group 
interactions, where multiple nodes (people) form a group and the 
interaction between them depend on each other

39
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Local Binding: Iterative Framework 
• Challenge: But there are still many ways to group nodes
• Consider RGMs that generate graphs on 𝑛𝑛 nodes (𝑣𝑣 = 1,2, … ,𝑛𝑛)
• Given: (1) Edge probabilities 𝑝𝑝: 𝑛𝑛

2 → 0,1 , (2) node-sampling 
probabilities 𝑔𝑔: 𝑛𝑛 → [0,1], (3) maximum number of rounds: 𝑅𝑅

• Initialize the set of remaining (i.e., not-yet-grouped) node pairs 𝑃𝑃rem
• Repeat for each round 𝑖𝑖 = 1,2, … ,𝑅𝑅:

• Sample each node 𝑣𝑣 ∈ 𝑛𝑛 with probability 𝑔𝑔(𝑣𝑣) Grouped nodes 𝑉𝑉𝑖𝑖
• Get the not-yet-grouped pairs among 𝑉𝑉𝑖𝑖  Node pairs 𝑃𝑃𝑖𝑖 = 𝑉𝑉𝑖𝑖

2 ∩ 𝑃𝑃rem
• Exclude those grouped pairs: 𝑃𝑃rem ← 𝑃𝑃rem ∖ 𝑃𝑃𝑖𝑖

• Bind those pairs together and generate edges  Generated edges 𝐸𝐸𝑖𝑖
• Independent sampling for the remaining pairs after 𝑅𝑅 rounds (if any)

40
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Local Binding: Example

• The edge probabilities 𝑝𝑝 and the node-sampling probabilities 𝑔𝑔 are in 
the tables. We sample for 𝑅𝑅 = 2 rounds for 𝑛𝑛 = 5 nodes

41

1 2

3 4

5

Node pair Probability

(1,2) 𝑝𝑝 1,2 = 1/2
(1,3) 𝑝𝑝 1,3 = 2/5
(1,4) 𝑝𝑝 1,4 = 1/3
(1,5) 𝑝𝑝 1,5 = 1/4
(2,3) 𝑝𝑝 2,3 = 3/4
(2,4) 𝑝𝑝 2,4 = 1/4
(2,5) 𝑝𝑝 2,5 = 2/3
(3,4) 𝑝𝑝 3,4 = 3/5
(3,5) 𝑝𝑝 3,5 = 1/2
(4,5) 𝑝𝑝 4,5 = 1/5

Node Probability

1 𝑔𝑔 1 = 1/2
2 𝑔𝑔 2 = 1/2
3 𝑔𝑔 3 = 1/2
4 𝑔𝑔 4 = 3/5
5 𝑔𝑔 5 = 4/5
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Local Binding: Example (Round 𝑖𝑖 = 1)

• Sampled nodes 𝑉𝑉𝑖𝑖 = ?

42

1 2

3 4

5

Node pair Probability

(1,2) 𝑝𝑝 1,2 = 1/2
(1,3) 𝑝𝑝 1,3 = 2/5
(1,4) 𝑝𝑝 1,4 = 1/3
(1,5) 𝑝𝑝 1,5 = 1/4
(2,3) 𝑝𝑝 2,3 = 3/4
(2,4) 𝑝𝑝 2,4 = 1/4
(2,5) 𝑝𝑝 2,5 = 2/3
(3,4) 𝑝𝑝 3,4 = 3/5
(3,5) 𝑝𝑝 3,5 = 1/2
(4,5) 𝑝𝑝 4,5 = 1/5

Node Probability

1 𝑔𝑔 1 = 1/2
2 𝑔𝑔 2 = 1/2
3 𝑔𝑔 3 = 1/2
4 𝑔𝑔 4 = 3/5
5 𝑔𝑔 5 = 4/5
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Local Binding: Example (Round 𝑖𝑖 = 1)

• Sampled nodes 𝑉𝑉𝑖𝑖 = ?
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1 2

3 4

5

Node pair Probability

(1,2) 𝑝𝑝 1,2 = 1/2
(1,3) 𝑝𝑝 1,3 = 2/5
(1,4) 𝑝𝑝 1,4 = 1/3
(1,5) 𝑝𝑝 1,5 = 1/4
(2,3) 𝑝𝑝 2,3 = 3/4
(2,4) 𝑝𝑝 2,4 = 1/4
(2,5) 𝑝𝑝 2,5 = 2/3
(3,4) 𝑝𝑝 3,4 = 3/5
(3,5) 𝑝𝑝 3,5 = 1/2
(4,5) 𝑝𝑝 4,5 = 1/5

Node Probability

1 𝑔𝑔 1 = 1/2
2 𝑔𝑔 2 = 1/2
3 𝑔𝑔 3 = 1/2
4 𝑔𝑔 4 = 3/5
5 𝑔𝑔 5 = 4/5
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Local Binding: Example (Round 𝑖𝑖 = 1)

• Sampled nodes 𝑉𝑉𝑖𝑖 = {2, … ? }
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1 2

3 4

5

Node pair Probability

(1,2) 𝑝𝑝 1,2 = 1/2
(1,3) 𝑝𝑝 1,3 = 2/5
(1,4) 𝑝𝑝 1,4 = 1/3
(1,5) 𝑝𝑝 1,5 = 1/4
(2,3) 𝑝𝑝 2,3 = 3/4
(2,4) 𝑝𝑝 2,4 = 1/4
(2,5) 𝑝𝑝 2,5 = 2/3
(3,4) 𝑝𝑝 3,4 = 3/5
(3,5) 𝑝𝑝 3,5 = 1/2
(4,5) 𝑝𝑝 4,5 = 1/5

Node Probability

1 𝑔𝑔 1 = 1/2
2 𝑔𝑔 2 = 1/2
3 𝑔𝑔 3 = 1/2
4 𝑔𝑔 4 = 3/5
5 𝑔𝑔 5 = 4/5
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Local Binding: Example (Round 𝑖𝑖 = 1)

• Sampled nodes 𝑉𝑉𝑖𝑖 = {2,3, … ? }
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1 2

3 4

5

Node pair Probability

(1,2) 𝑝𝑝 1,2 = 1/2
(1,3) 𝑝𝑝 1,3 = 2/5
(1,4) 𝑝𝑝 1,4 = 1/3
(1,5) 𝑝𝑝 1,5 = 1/4
(2,3) 𝑝𝑝 2,3 = 3/4
(2,4) 𝑝𝑝 2,4 = 1/4
(2,5) 𝑝𝑝 2,5 = 2/3
(3,4) 𝑝𝑝 3,4 = 3/5
(3,5) 𝑝𝑝 3,5 = 1/2
(4,5) 𝑝𝑝 4,5 = 1/5

Node Probability

1 𝑔𝑔 1 = 1/2
2 𝑔𝑔 2 = 1/2
3 𝑔𝑔 3 = 1/2
4 𝑔𝑔 4 = 3/5
5 𝑔𝑔 5 = 4/5
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Local Binding: Example (Round 𝑖𝑖 = 1)

• Sampled nodes 𝑉𝑉𝑖𝑖 = {2,3,4, … ? }
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1 2

3 4

5

Node pair Probability

(1,2) 𝑝𝑝 1,2 = 1/2
(1,3) 𝑝𝑝 1,3 = 2/5
(1,4) 𝑝𝑝 1,4 = 1/3
(1,5) 𝑝𝑝 1,5 = 1/4
(2,3) 𝑝𝑝 2,3 = 3/4
(2,4) 𝑝𝑝 2,4 = 1/4
(2,5) 𝑝𝑝 2,5 = 2/3
(3,4) 𝑝𝑝 3,4 = 3/5
(3,5) 𝑝𝑝 3,5 = 1/2
(4,5) 𝑝𝑝 4,5 = 1/5

Node Probability

1 𝑔𝑔 1 = 1/2
2 𝑔𝑔 2 = 1/2
3 𝑔𝑔 3 = 1/2
4 𝑔𝑔 4 = 3/5
5 𝑔𝑔 5 = 4/5



[ICDM’25] Edge Probability Graph Models Beyond Edge IndependencyBu, Yang, Bogdan, and Shin

Local Binding: Example (Round 𝑖𝑖 = 1)

• Sampled nodes 𝑉𝑉𝑖𝑖 = {2,3,4,5}
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1 2

3 4

5

Node pair Probability

(1,2) 𝑝𝑝 1,2 = 1/2
(1,3) 𝑝𝑝 1,3 = 2/5
(1,4) 𝑝𝑝 1,4 = 1/3
(1,5) 𝑝𝑝 1,5 = 1/4
(2,3) 𝑝𝑝 2,3 = 3/4
(2,4) 𝑝𝑝 2,4 = 1/4
(2,5) 𝑝𝑝 2,5 = 2/3
(3,4) 𝑝𝑝 3,4 = 3/5
(3,5) 𝑝𝑝 3,5 = 1/2
(4,5) 𝑝𝑝 4,5 = 1/5

Node Probability

1 𝑔𝑔 1 = 1/2
2 𝑔𝑔 2 = 1/2
3 𝑔𝑔 3 = 1/2
4 𝑔𝑔 4 = 3/5
5 𝑔𝑔 5 = 4/5
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Local Binding: Example (Round 𝑖𝑖 = 1)

• Sampled nodes 𝑉𝑉𝑖𝑖 = {2,3,4,5} Grouped pairs 𝑃𝑃𝑖𝑖 =
{ 2,3 , 2,4 , 2,5 , 3,4 , 3,5 , {4,5}}
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1 2

3 4

5

Node pair Probability

(1,2) 𝑝𝑝 1,2 = 1/2
(1,3) 𝑝𝑝 1,3 = 2/5
(1,4) 𝑝𝑝 1,4 = 1/3
(1,5) 𝑝𝑝 1,5 = 1/4
(2,3) 𝑝𝑝 2,3 = 3/4
(2,4) 𝑝𝑝 2,4 = 1/4
(2,5) 𝑝𝑝 2,5 = 2/3
(3,4) 𝑝𝑝 3,4 = 3/5
(3,5) 𝑝𝑝 3,5 = 1/2
(4,5) 𝑝𝑝 4,5 = 1/5

Node Probability

1 𝑔𝑔 1 = 1/2
2 𝑔𝑔 2 = 1/2
3 𝑔𝑔 3 = 1/2
4 𝑔𝑔 4 = 3/5
5 𝑔𝑔 5 = 4/5



[ICDM’25] Edge Probability Graph Models Beyond Edge IndependencyBu, Yang, Bogdan, and Shin

Local Binding: Example (Round 𝑖𝑖 = 1)

• Sampled nodes 𝑉𝑉𝑖𝑖 = {2,3,4,5} Grouped pairs 𝑃𝑃𝑖𝑖 =
{ 2,3 , 2,4 , 2,5 , 3,4 , 3,5 , {4,5}} Sampled 𝑠𝑠 = 0.47
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1 2

3 4

5

Node pair Probability

(1,2) 𝑝𝑝 1,2 = 1/2
(1,3) 𝑝𝑝 1,3 = 2/5
(1,4) 𝑝𝑝 1,4 = 1/3
(1,5) 𝑝𝑝 1,5 = 1/4
(2,3) 𝑝𝑝 2,3 = 3/4
(2,4) 𝑝𝑝 2,4 = 1/4
(2,5) 𝑝𝑝 2,5 = 2/3
(3,4) 𝑝𝑝 3,4 = 3/5
(3,5) 𝑝𝑝 3,5 = 1/2
(4,5) 𝑝𝑝 4,5 = 1/5

Node Probability

1 𝑔𝑔 1 = 1/2
2 𝑔𝑔 2 = 1/2
3 𝑔𝑔 3 = 1/2
4 𝑔𝑔 4 = 3/5
5 𝑔𝑔 5 = 4/5
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Local Binding: Example (Round 𝑖𝑖 = 1)

• Sampled nodes 𝑉𝑉𝑖𝑖 = {2,3,4,5} Grouped pairs 𝑃𝑃𝑖𝑖 =
{ 2,3 , 2,4 , 2,5 , 3,4 , 3,5 , {4,5}} Sampled 𝑠𝑠 = 0.47
 Generated edges 𝐸𝐸𝑖𝑖 = ?
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1 2

3 4

5

Node pair Probability

(1,2) 𝑝𝑝 1,2 = 1/2
(1,3) 𝑝𝑝 1,3 = 2/5
(1,4) 𝑝𝑝 1,4 = 1/3
(1,5) 𝑝𝑝 1,5 = 1/4
(2,3) 𝑝𝑝 2,3 = 3/4
(2,4) 𝑝𝑝 2,4 = 1/4
(2,5) 𝑝𝑝 2,5 = 2/3
(3,4) 𝑝𝑝 3,4 = 3/5
(3,5) 𝑝𝑝 3,5 = 1/2
(4,5) 𝑝𝑝 4,5 = 1/5

Node Probability

1 𝑔𝑔 1 = 1/2
2 𝑔𝑔 2 = 1/2
3 𝑔𝑔 3 = 1/2
4 𝑔𝑔 4 = 3/5
5 𝑔𝑔 5 = 4/5
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Local Binding: Example (Round 𝑖𝑖 = 1)

• Sampled nodes 𝑉𝑉𝑖𝑖 = {2,3,4,5} Grouped pairs 𝑃𝑃𝑖𝑖 =
{ 2,3 , 2,4 , 2,5 , 3,4 , 3,5 , {4,5}} Sampled 𝑠𝑠 = 0.47
 Generated edges 𝐸𝐸𝑖𝑖 = { 2,3 , 2,5 , 3,4 , {3,5}}
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1 2

3 4

5

Node pair Probability

(1,2) 𝑝𝑝 1,2 = 1/2
(1,3) 𝑝𝑝 1,3 = 2/5
(1,4) 𝑝𝑝 1,4 = 1/3
(1,5) 𝑝𝑝 1,5 = 1/4
(2,3) 𝑝𝑝 2,3 = 3/4
(2,4) 𝑝𝑝 2,4 = 1/4
(2,5) 𝑝𝑝 2,5 = 2/3
(3,4) 𝑝𝑝 3,4 = 3/5
(3,5) 𝑝𝑝 3,5 = 1/2
(4,5) 𝑝𝑝 4,5 = 1/5

Node Probability

1 𝑔𝑔 1 = 1/2
2 𝑔𝑔 2 = 1/2
3 𝑔𝑔 3 = 1/2
4 𝑔𝑔 4 = 3/5
5 𝑔𝑔 5 = 4/5
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Local Binding: Example (Round 𝑖𝑖 = 1)

• Sampled nodes 𝑉𝑉𝑖𝑖 = {2,3,4,5} Grouped pairs 𝑃𝑃𝑖𝑖 =
{ 2,3 , 2,4 , 2,5 , 3,4 , 3,5 , {4,5}} Sampled 𝑠𝑠 = 0.47
 Generated edges 𝐸𝐸𝑖𝑖 = { 2,3 , 2,5 , 3,4 , {3,5}} Round 1 over!
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Node pair Probability

(1,2) 𝑝𝑝 1,2 = 1/2
(1,3) 𝑝𝑝 1,3 = 2/5
(1,4) 𝑝𝑝 1,4 = 1/3
(1,5) 𝑝𝑝 1,5 = 1/4
(2,3) 𝑝𝑝 2,3 = 3/4
(2,4) 𝑝𝑝 2,4 = 1/4
(2,5) 𝑝𝑝 2,5 = 2/3
(3,4) 𝑝𝑝 3,4 = 3/5
(3,5) 𝑝𝑝 3,5 = 1/2
(4,5) 𝑝𝑝 4,5 = 1/5

Node Probability

1 𝑔𝑔 1 = 1/2
2 𝑔𝑔 2 = 1/2
3 𝑔𝑔 3 = 1/2
4 𝑔𝑔 4 = 3/5
5 𝑔𝑔 5 = 4/5

1 2

3 4

5
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Local Binding: Example (Round 𝑖𝑖 = 2)

• Sampled nodes 𝑉𝑉𝑖𝑖 = {1,2,3,4}
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Node pair Probability

(1,2) 𝑝𝑝 1,2 = 1/2
(1,3) 𝑝𝑝 1,3 = 2/5
(1,4) 𝑝𝑝 1,4 = 1/3
(1,5) 𝑝𝑝 1,5 = 1/4
(2,3) 𝑝𝑝 2,3 = 3/4
(2,4) 𝑝𝑝 2,4 = 1/4
(2,5) 𝑝𝑝 2,5 = 2/3
(3,4) 𝑝𝑝 3,4 = 3/5
(3,5) 𝑝𝑝 3,5 = 1/2
(4,5) 𝑝𝑝 4,5 = 1/5

Node Probability

1 𝑔𝑔 1 = 1/2
2 𝑔𝑔 2 = 1/2
3 𝑔𝑔 3 = 1/2
4 𝑔𝑔 4 = 3/5
5 𝑔𝑔 5 = 4/5

1 2

3 4

5
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Local Binding: Example (Round 𝑖𝑖 = 2)

• Sampled nodes 𝑉𝑉𝑖𝑖 = {1,2,3,4} Grouped pairs 𝑃𝑃𝑖𝑖 =
{ 1,2 , 1,3 , 1,4 , 1,5 }
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Node pair Probability

(1,2) 𝑝𝑝 1,2 = 1/2
(1,3) 𝑝𝑝 1,3 = 2/5
(1,4) 𝑝𝑝 1,4 = 1/3
(1,5) 𝑝𝑝 1,5 = 1/4
(2,3) 𝑝𝑝 2,3 = 3/4
(2,4) 𝑝𝑝 2,4 = 1/4
(2,5) 𝑝𝑝 2,5 = 2/3
(3,4) 𝑝𝑝 3,4 = 3/5
(3,5) 𝑝𝑝 3,5 = 1/2
(4,5) 𝑝𝑝 4,5 = 1/5

Node Probability

1 𝑔𝑔 1 = 1/2
2 𝑔𝑔 2 = 1/2
3 𝑔𝑔 3 = 1/2
4 𝑔𝑔 4 = 3/5
5 𝑔𝑔 5 = 4/5

1 2

3 4

5
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Local Binding: Example (Round 𝑖𝑖 = 2)

• Sampled nodes 𝑉𝑉𝑖𝑖 = {1,2,3,4} Grouped pairs 𝑃𝑃𝑖𝑖 =
{ 1,2 , 1,3 , 1,4 , 1,5 } Sampled 𝑠𝑠 = 0.39
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Node pair Probability

(1,2) 𝑝𝑝 1,2 = 1/2
(1,3) 𝑝𝑝 1,3 = 2/5
(1,4) 𝑝𝑝 1,4 = 1/3
(1,5) 𝑝𝑝 1,5 = 1/4
(2,3) 𝑝𝑝 2,3 = 3/4
(2,4) 𝑝𝑝 2,4 = 1/4
(2,5) 𝑝𝑝 2,5 = 2/3
(3,4) 𝑝𝑝 3,4 = 3/5
(3,5) 𝑝𝑝 3,5 = 1/2
(4,5) 𝑝𝑝 4,5 = 1/5

Node Probability

1 𝑔𝑔 1 = 1/2
2 𝑔𝑔 2 = 1/2
3 𝑔𝑔 3 = 1/2
4 𝑔𝑔 4 = 3/5
5 𝑔𝑔 5 = 4/5

1 2

3 4
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Local Binding: Example (Round 𝑖𝑖 = 2)

• Sampled nodes 𝑉𝑉𝑖𝑖 = {1,2,3,4} Grouped pairs 𝑃𝑃𝑖𝑖 =
{ 1,2 , 1,3 , 1,4 , 1,5 } Sampled 𝑠𝑠 = 0.39
 Generated edges 𝐸𝐸𝑖𝑖 = { 1,2 , {1,3}}
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Node pair Probability

(1,2) 𝑝𝑝 1,2 = 1/2
(1,3) 𝑝𝑝 1,3 = 2/5
(1,4) 𝑝𝑝 1,4 = 1/3
(1,5) 𝑝𝑝 1,5 = 1/4
(2,3) 𝑝𝑝 2,3 = 3/4
(2,4) 𝑝𝑝 2,4 = 1/4
(2,5) 𝑝𝑝 2,5 = 2/3
(3,4) 𝑝𝑝 3,4 = 3/5
(3,5) 𝑝𝑝 3,5 = 1/2
(4,5) 𝑝𝑝 4,5 = 1/5

Node Probability

1 𝑔𝑔 1 = 1/2
2 𝑔𝑔 2 = 1/2
3 𝑔𝑔 3 = 1/2
4 𝑔𝑔 4 = 3/5
5 𝑔𝑔 5 = 4/5

1 2

3 4

5
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Local Binding: Example (Round 𝑖𝑖 = 2)

• Sampled nodes 𝑉𝑉𝑖𝑖 = {1,2,3,4} Grouped pairs 𝑃𝑃𝑖𝑖 =
{ 1,2 , 1,3 , 1,4 , 1,5 } Sampled 𝑠𝑠 = 0.39
 Generated edges 𝐸𝐸𝑖𝑖 = { 1,2 , {1,3}} Round 2 over!
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Node pair Probability

(1,2) 𝑝𝑝 1,2 = 1/2
(1,3) 𝑝𝑝 1,3 = 2/5
(1,4) 𝑝𝑝 1,4 = 1/3
(1,5) 𝑝𝑝 1,5 = 1/4
(2,3) 𝑝𝑝 2,3 = 3/4
(2,4) 𝑝𝑝 2,4 = 1/4
(2,5) 𝑝𝑝 2,5 = 2/3
(3,4) 𝑝𝑝 3,4 = 3/5
(3,5) 𝑝𝑝 3,5 = 1/2
(4,5) 𝑝𝑝 4,5 = 1/5

Node Probability

1 𝑔𝑔 1 = 1/2
2 𝑔𝑔 2 = 1/2
3 𝑔𝑔 3 = 1/2
4 𝑔𝑔 4 = 3/5
5 𝑔𝑔 5 = 4/5

1 2

3 4

5
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Local Binding: Example (Termination)

• All node pairs have been determined (i.e., remaining pairs 𝑃𝑃rem = ∅)
 The whole generation process is terminated 
Final edge set 𝐸𝐸 = 𝐸𝐸1 ∪ 𝐸𝐸2 = { 1,2 , 1,3 , 2,3 , 2,5 , 3,4 , {3,5}}
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Node pair Probability

(1,2) 𝑝𝑝 1,2 = 1/2
(1,3) 𝑝𝑝 1,3 = 2/5
(1,4) 𝑝𝑝 1,4 = 1/3
(1,5) 𝑝𝑝 1,5 = 1/4
(2,3) 𝑝𝑝 2,3 = 3/4
(2,4) 𝑝𝑝 2,4 = 1/4
(2,5) 𝑝𝑝 2,5 = 2/3
(3,4) 𝑝𝑝 3,4 = 3/5
(3,5) 𝑝𝑝 3,5 = 1/2
(4,5) 𝑝𝑝 4,5 = 1/5

1 2

3 4

5

Node Probability

1 𝑔𝑔 1 = 1/2
2 𝑔𝑔 2 = 1/2
3 𝑔𝑔 3 = 1/2
4 𝑔𝑔 4 = 3/5
5 𝑔𝑔 5 = 4/5
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Closed-Form Triangle Count Computation

• Theorem: With local binding, we are able to compute the closed-form 
expected number of triangles in a generated graph

• Linearity of expectation  Only need to compute the probability of 
each triangle being generated  Sum up the probabilities

• Fact: The probability of forming a triangle only depends on how the 
three node pairs are grouped
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Example Revisited

60

Node pair Probability

(1,2) 𝑝𝑝 1,2 = 1/2
(1,3) 𝑝𝑝 1,3 = 1/4
(2,3) 𝑝𝑝 2,3 = 1/2

1

32

1

32

1

32

1

32

1

32

1

32

1

32

1

32
𝐺𝐺1 𝐺𝐺2 𝐺𝐺3 𝐺𝐺4 𝐺𝐺5 𝐺𝐺6 𝐺𝐺7 𝐺𝐺8

RGM 𝐏𝐏𝐏𝐏[𝑮𝑮𝟏𝟏] 𝐏𝐏𝐏𝐏[𝑮𝑮𝟐𝟐] 𝐏𝐏𝐏𝐏[𝑮𝑮𝟑𝟑] 𝐏𝐏𝐏𝐏[𝑮𝑮𝟒𝟒] 𝐏𝐏𝐏𝐏[𝑮𝑮𝟓𝟓] 𝐏𝐏𝐏𝐏[𝑮𝑮𝟔𝟔] 𝐏𝐏𝐏𝐏[𝑮𝑮𝟕𝟕] 𝐏𝐏𝐏𝐏[𝑮𝑮𝟖𝟖]
RGM1 3/16 3/16 1/16 3/16 1/16 3/16 1/16 1/16

RGM2 1/4 1/8 0 1/4 1/8 1/8 0 1/8

RGM3 1/2 0 0 0 0 1/4 0 1/4

• Fact: The probability of forming a triangle only depends on how the three 
node pairs are grouped, e.g.,

• RGM1: All separated (three groups 1,2 / 1,3 / 2,3 )  Pr △ = 1/16
• RGM2: Partially grouped (two groups 1,2 , 1,3 / 2,3 )  Pr △ = 1/8
• RGM3: All grouped (a single group 1,2 , 1,3 , 2,3 )  Pr △ = 1/4
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Closed-Form Triangle Count Computation

• Theorem: With local binding, we are able to compute the closed-form 
expected number of triangles in a generated graph

• Fact: The probability of forming a triangle only depends on how the 
three node pairs are grouped

•  Only need to compute the probability of each possible grouping
•  After getting the probability of each possible grouping
• Pr △ = ∑possible grouping 𝒫𝒫 Pr 𝒫𝒫 Pr[△|𝒫𝒫]

• Sum of Pr getting that grouping ⋅ Pr[triangle under that grouping]
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Parallel Binding: Easily Parallelizable Variant

• It is non-trivial to parallelized 
local binding, due to the 
temporal dependency in the 
generation process

• Specifically, in a round, whether 
an edge is generated depends on 
whether it is grouped in a 
previous round

• We propose parallel binding, 
an easily-parallelizable version 
of binding
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Local binding

Parallel binding
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Parallel Binding: Key Idea

• Key idea: Make the rounds 
temporally independent, so 
that multiple rounds can be 
processed in a parallel manner

• In every round, each pair (𝑖𝑖, 𝑗𝑗)
is possible to be grouped, and 
the corresponding edge is 
possible to be generated

• So that, the marginal edge 
probability 𝑝𝑝(𝑖𝑖, 𝑗𝑗) is satisfied 
accumulated over the rounds
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Local binding

Parallel binding
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Parallel Binding v.s. Local Binding

• Both parallel binding and local binding (1) preserve marginal edge 
probabilities and (2) impose edge dependency, but they are 
mathematically distinct and result in different random graph models

• Between the two variants, neither is always superior over the other, 
but we recommend parallel binding if efficiency is a major concern
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Parameter Fitting

• Parameters: Edge probabilities 𝑝𝑝, node-sampling probabilities 𝑔𝑔, and 
the number of rounds 𝑅𝑅

• We assume edge probabilities 𝑝𝑝 are given or obtained from some 
edge-probability model (e.g., Erdős-Rényi or Chung-Lu)

• We manually set the number of rounds 𝑅𝑅
• Variables: We only fit the node-sampling probabilities 𝑔𝑔
• Objective: The expected number of triangles, for which we have 

derived theoretical results
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Parameter Fitting: Intuition
• Q: Why do we use the number of triangles as the objective?
• Recall the question we had in the beginning: Can we go beyond edge 

independency, breaking through the limitations, but still keeping the 
merits of the edge independent graph models?

• Merits (what edge-independent models can already do well): Heavy-
tailed degree distribution and small diameter

• Limitations (what edge-independent models cannot do well): High 
clustering (e.g., higher triangle-density)

•  So we obtain the edge probabilities from those models to maintain 
their merits, while focusing on improving w.r.t. clustering
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Experimental Settings

• Datasets: Real-world graphs from different domains
• Social networks: Hamster and Facebook
• Web graphs: Pol-blogs and Spam
• Biological graphs: CE-PG and SC-HT

• Clustering metrics: Number of triangles (△), global clustering 
coefficient (GCC), and average local clustering coefficient (ALCC)
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Fitting and Graph Generation Processes
• Edge-probability models: Erdős-Rényi model, Chung-Lu model, 

stochastic block model, and stochastic Kronecker model
• Edge-dependency mechanisms: Edge independent, local binding, and 

parallel binding
• Fitting 1: Given an input graph, for each edge-probability model, we 

fit the parameters of the model marginal edge probabilities 𝑝𝑝
• Fitting 2: Given 𝑝𝑝 obtained above, we optimize node-sampling 

probabilities 𝑔𝑔 so that the expected number of triangles in a 
generated graph matches the ground truth in the input graph

• Graph generation: We generate random graphs with binding using 𝑝𝑝
and 𝑔𝑔, and we also generate graphs using the edge independent 
graph model with 𝑝𝑝 only (i.e., 𝑔𝑔 𝑣𝑣 = 0 for each node 𝑣𝑣)
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Results: Binding Maintains Realistic Degrees and Distances

• Observation: With binding, degree and distance distributions are 
largely maintained as in the edge-independent models We 
“inherit” the merits of edge-independent models
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Dataset: Hamster Dataset: Facebook

Erdős-Rényi 

Chung-Lu

Stochastic Block

Stochastic Kronecker

Dataset: Hamster Dataset: Facebook
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Results: Binding Improves Clustering

• Observation: With binding, the number of triangles (△; our fitting 
objective) is well fit, and both global clustering coefficient (GCC) and 
average local clustering coefficient (ALCC) are closer to the ground-
truth values We break the limitations of edge-independent models
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Results: Binding Improves Other Graph Metrics

• Observation: With binding, the overall values of various graph 
metrics get closer to the ground-truth values We improve upon 
edge-independent models in various aspects

• Averaged over the datasets
• The relative error of “edge independent” is normalized as reference (1.0)
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Conclusion

In this work, we…
• Proposed new concepts: Edge probability graph models (EPGMs) that 

keep marginal edge probabilities but go beyond edge dependency
• Proposed binding framework: A realistic and practical way to impose 

edge dependency by grouping nodes
• Derived theoretical results: Closed-form formula for the number of 

triangles in graphs generated using the binding framework
• Developed efficient algorithms: Fast parameter fitting by considering 

node equivalence in existing edge probability models
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Appendix, Code, and Datasets: bit.ly/EPGM_ICDM25
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